In [1]:
#forked from Gilberto Titericz Junior
import pandas as pd
import numpy as np
from sklearn import ensemble, preprocessing
import xgboost as xgb
# load training and test datasets
train = pd.read_csv('../competition_data/train_set.csv', parse_dates=[2,])
test = pd.read_csv('../competition_data/test_set.csv', parse_dates=[3,])
tube_data = pd.read_csv('../competition_data/tube.csv')
bill_of_materials_data = pd.read_csv('../competition_data/bill_of_materials.csv')
specs_data = pd.read_csv('../competition_data/specs.csv')
# print("train columns")
# print(train.columns)
# print("test columns")
# print(test.columns)
# print("tube.csv df columns")
# print(tube_data.columns)
# print("bill_of_materials.csv df columns")
# print(bill_of_materials_data.columns)
# print("specs.csv df columns")
# print(specs_data.columns)
# print(specs_data[2:3])
train = pd.merge(train, tube_data, on ='tube_assembly_id')
train = pd.merge(train, bill_of_materials_data, on ='tube_assembly_id')
test = pd.merge(test, tube_data, on ='tube_assembly_id')
test = pd.merge(test, bill_of_materials_data, on ='tube_assembly_id')
# print("new train columns")
# print(train.columns)
# print(train[1:10])
# print(train.columns.to_series().groupby(train.dtypes).groups)
# create some new features
train['year'] = train.quote_date.dt.year
train['month'] = train.quote_date.dt.month
#train['dayofyear'] = train.quote_date.dt.dayofyear
#train['dayofweek'] = train.quote_date.dt.dayofweek
#train['day'] = train.quote_date.dt.day
test['year'] = test.quote_date.dt.year
test['month'] = test.quote_date.dt.month
#test['dayofyear'] = test.quote_date.dt.dayofyear
#test['dayofweek'] = test.quote_date.dt.dayofweek
#test['day'] = test.quote_date.dt.day
# drop useless columns and create labels
idx = test.id.values.astype(int)
test = test.drop(['id', 'tube_assembly_id', 'quote_date'], axis = 1)
labels = train.cost.values
#'tube_assembly_id', 'supplier', 'bracket_pricing', 'material_id', 'end_a_1x', 'end_a_2x', 'end_x_1x', 'end_x_2x', 'end_a', 'end_x'
#for some reason material_id cannot be converted to categorical variable
train = train.drop(['quote_date', 'cost', 'tube_assembly_id'], axis = 1)
train['material_id'].replace(np.nan,' ', regex=True, inplace= True)
test['material_id'].replace(np.nan,' ', regex=True, inplace= True)
for i in range(1,9):
column_label = 'component_id_'+str(i)
print(column_label)
train[column_label].replace(np.nan,' ', regex=True, inplace= True)
test[column_label].replace(np.nan,' ', regex=True, inplace= True)
train.fillna(0, inplace = True)
test.fillna(0, inplace = True)
print("train columns")
print(train.columns)
# convert data to numpy array
train = np.array(train)
test = np.array(test)
# label encode the categorical variables
for i in range(train.shape[1]):
if i in [0,3,5,11,12,13,14,15,16,20,22,24,26,28,30,32,34]:
print(i,list(train[1:5,i]) + list(test[1:5,i]))
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train[:,i]) + list(test[:,i]))
train[:,i] = lbl.transform(train[:,i])
test[:,i] = lbl.transform(test[:,i])
# object array to float
train = train.astype(float)
test = test.astype(float)
# i like to train on log(1+x) for RMSLE ;)
# The choice is yours :)
label_log = np.log1p(labels)
# fit a random forest model
params = {}
params["objective"] = "reg:linear"
params["eta"] = 0.02
params["min_child_weight"] = 5
params["subsample"] = 0.7
params["colsample_bytree"] = 0.6
params["scale_pos_weight"] = 0.8
params["silent"] = 1
params["max_depth"] = 9
params["max_delta_step"]=2
plst = list(params.items())
xgtrain = xgb.DMatrix(train, label=label_log)
xgtest = xgb.DMatrix(test)
num_rounds = 2000
model = xgb.train(plst, xgtrain, num_rounds)
preds1 = model.predict(xgtest)
num_rounds = 3000
model = xgb.train(plst, xgtrain, num_rounds)
preds2 = model.predict(xgtest)
num_rounds = 1500
model = xgb.train(plst, xgtrain, num_rounds)
preds4 = model.predict(xgtest)
label_log = np.power(labels,1.0/16)
xgtrain = xgb.DMatrix(train, label=label_log)
xgtest = xgb.DMatrix(test)
num_rounds = 4000
model = xgb.train(plst, xgtrain, num_rounds)
preds3 = model.predict(xgtest)
#for loop in range(2):
# model = xgb.train(plst, xgtrain, num_rounds)
# preds1 = preds1 + model.predict(xgtest)
preds = (np.expm1( (preds1+preds2+preds4)/3)+np.power(preds3,16))/2
preds = pd.DataFrame({"id": idx, "cost": preds})
# preds.to_csv('benchmark.csv', index=False)
In [20]:
print preds[:10]
In [ ]: