In [1]:
#Purpose: import from other notebook...
#Ref: http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Importing%20Notebooks.html
import io, os, sys, types
from IPython import get_ipython
from nbformat import read
from IPython.core.interactiveshell import InteractiveShell
#--------------------------------------------------------------------------------
def find_notebook(fullname, path=None):
    """find a notebook, given its fully qualified name and an optional path
    
    This turns "foo.bar" into "foo/bar.ipynb"
    and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
    does not exist.
    """
    name = fullname.rsplit('.', 1)[-1]
    if not path:
        path = ['']
    for d in path:
        nb_path = os.path.join(d, name + ".ipynb")
        if os.path.isfile(nb_path):
            return nb_path
        # let import Notebook_Name find "Notebook Name.ipynb"
        nb_path = nb_path.replace("_", " ")
        if os.path.isfile(nb_path):
            return nb_path
#--------------------------------------------------------------------------------
class NotebookLoader(object):
    """Module Loader for Jupyter Notebooks"""
    def __init__(self, path=None):
        self.shell = InteractiveShell.instance()
        self.path = path
    
    def load_module(self, fullname):
        """import a notebook as a module"""
        path = find_notebook(fullname, self.path)
        
        print ("importing Jupyter notebook from %s" % path)
                                       
        # load the notebook object
        with io.open(path, 'r', encoding='utf-8') as f:
            nb = read(f, 4)
        
        
        # create the module and add it to sys.modules
        # if name in sys.modules:
        #    return sys.modules[name]
        mod = types.ModuleType(fullname)
        mod.__file__ = path
        mod.__loader__ = self
        mod.__dict__['get_ipython'] = get_ipython
        sys.modules[fullname] = mod
        
        # extra work to ensure that magics that would affect the user_ns
        # actually affect the notebook module's ns
        save_user_ns = self.shell.user_ns
        self.shell.user_ns = mod.__dict__
        
        try:
          for cell in nb.cells:
            if cell.cell_type == 'code':
                # transform the input to executable Python
                code = self.shell.input_transformer_manager.transform_cell(cell.source)
                # run the code in themodule
                exec(code, mod.__dict__)
        finally:
            self.shell.user_ns = save_user_ns
        return mod
#--------------------------------------------------------------------------------
class NotebookFinder(object):
    """Module finder that locates Jupyter Notebooks"""
    def __init__(self):
        self.loaders = {}
    
    def find_module(self, fullname, path=None):
        nb_path = find_notebook(fullname, path)
        if not nb_path:
            return
        
        key = path
        if path:
            # lists aren't hashable
            key = os.path.sep.join(path)
        
        if key not in self.loaders:
            self.loaders[key] = NotebookLoader(path)
        return self.loaders[key]
#--------------------------------------------------------------------------------
sys.meta_path.append(NotebookFinder())

In [ ]:
ls


hypothesis_and_inference.ipynb  LICENSE               README.md
Importing Notebooks.ipynb       linear_algebra.ipynb  statistics.ipynb
__init__.py                     probability.ipynb     visualizing_data.ipynb

In [ ]:
from linear_algebra import sum_of_squares, dot


importing Jupyter notebook from linear_algebra.ipynb

In [ ]:
from collections import Counter
import math
import os
import sys

In [ ]:
num_friends = [100,49,41,40,25,21,21,19,19,18,18,16,15,15,15,15,14,14,13,13,13,13,12,12,11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,8,8,8,8,8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

In [ ]:
def make_friend_counts_histogram(plt):
    friend_counts = Counter(num_friends)
    xs = range(101)
    ys = [friend_counts[x] for x in xs]
    plt.bar(xs, ys)
    plt.axis([0,101,0,25])
    plt.title("Histogram of Friend Counts")
    plt.xlabel("# of friends")
    plt.ylabel("# of people")
    plt.show()

num_points = len(num_friends)               # 204

largest_value = max(num_friends)            # 100
smallest_value = min(num_friends)           # 1

sorted_values = sorted(num_friends)
smallest_value = sorted_values[0]           # 1
second_smallest_value = sorted_values[1]    # 1
second_largest_value = sorted_values[-2]    # 49
#--------------------------------------------------------------------------------
# this isn't right if you don't from __future__ import division
def mean(x): 
    return sum(x) / len(x)
#--------------------------------------------------------------------------------
def median(v):
    """finds the 'middle-most' value of v"""
    n = len(v)
    sorted_v = sorted(v)
    midpoint = n // 2
    
    if n % 2 == 1:
        # if odd, return the middle value
        return sorted_v[midpoint]
    else:
        # if even, return the average of the middle values
        lo = midpoint - 1
        hi = midpoint
        return (sorted_v[lo] + sorted_v[hi]) / 2
#--------------------------------------------------------------------------------        
def quantile(x, p):
    """returns the pth-percentile value in x"""
    p_index = int(p * len(x))
    return sorted(x)[p_index]
#--------------------------------------------------------------------------------
def mode(x):
    """returns a list, might be more than one mode"""
    counts = Counter(x)
    max_count = max(counts.values())
    
    #return [x_i for x_i, count in counts.iteritems() if count == max_count] #python 2x
    return [x_i for x_i, count in iter(counts.items()) if count == max_count] #python 3x, ref: http://legacy.python.org/dev/peps/pep-0469/
#--------------------------------------------------------------------------------    
# "range" already means something in Python, so we'll use a different name
def data_range(x):
    return max(x) - min(x)
#--------------------------------------------------------------------------------
def de_mean(x):
    """translate x by subtracting its mean (so the result has mean 0)"""
    x_bar = mean(x)
    return [x_i - x_bar for x_i in x]
#--------------------------------------------------------------------------------
def variance(x):
    """assumes x has at least two elements"""
    n = len(x)
    deviations = de_mean(x)
    return sum_of_squares(deviations) / (n - 1)
#--------------------------------------------------------------------------------
def standard_deviation(x):
    return math.sqrt(variance(x))
#--------------------------------------------------------------------------------
def interquartile_range(x):
    return quantile(x, 0.75) - quantile(x, 0.25)

In [ ]:
####
#
# CORRELATION
#
#####

daily_minutes = [1,68.77,51.25,52.08,38.36,44.54,57.13,51.4,41.42,31.22,34.76,54.01,38.79,47.59,49.1,27.66,41.03,36.73,48.65,28.12,46.62,35.57,32.98,35,26.07,23.77,39.73,40.57,31.65,31.21,36.32,20.45,21.93,26.02,27.34,23.49,46.94,30.5,33.8,24.23,21.4,27.94,32.24,40.57,25.07,19.42,22.39,18.42,46.96,23.72,26.41,26.97,36.76,40.32,35.02,29.47,30.2,31,38.11,38.18,36.31,21.03,30.86,36.07,28.66,29.08,37.28,15.28,24.17,22.31,30.17,25.53,19.85,35.37,44.6,17.23,13.47,26.33,35.02,32.09,24.81,19.33,28.77,24.26,31.98,25.73,24.86,16.28,34.51,15.23,39.72,40.8,26.06,35.76,34.76,16.13,44.04,18.03,19.65,32.62,35.59,39.43,14.18,35.24,40.13,41.82,35.45,36.07,43.67,24.61,20.9,21.9,18.79,27.61,27.21,26.61,29.77,20.59,27.53,13.82,33.2,25,33.1,36.65,18.63,14.87,22.2,36.81,25.53,24.62,26.25,18.21,28.08,19.42,29.79,32.8,35.99,28.32,27.79,35.88,29.06,36.28,14.1,36.63,37.49,26.9,18.58,38.48,24.48,18.95,33.55,14.24,29.04,32.51,25.63,22.22,19,32.73,15.16,13.9,27.2,32.01,29.27,33,13.74,20.42,27.32,18.23,35.35,28.48,9.08,24.62,20.12,35.26,19.92,31.02,16.49,12.16,30.7,31.22,34.65,13.13,27.51,33.2,31.57,14.1,33.42,17.44,10.12,24.42,9.82,23.39,30.93,15.03,21.67,31.09,33.29,22.61,26.89,23.48,8.38,27.81,32.35,23.84]

def covariance(x, y):
    n = len(x)
    return dot(de_mean(x), de_mean(y)) / (n - 1)
#--------------------------------------------------------------------------------
def correlation(x, y):
    stdev_x = standard_deviation(x)
    stdev_y = standard_deviation(y)
    if stdev_x > 0 and stdev_y > 0:
        return covariance(x, y) / stdev_x / stdev_y
    else:
        return 0 # if no variation, correlation is zero

outlier = num_friends.index(100) # index of outlier

num_friends_good = [x 
                    for i, x in enumerate(num_friends) 
                    if i != outlier]

daily_minutes_good = [x 
                      for i, x in enumerate(daily_minutes) 
                      if i != outlier]

In [ ]:
print("num_points", len(num_friends))
print("largest value", max(num_friends))
print("smallest value", min(num_friends))
print("second_smallest_value", sorted_values[1])
print("second_largest_value", sorted_values[-2])
print("mean(num_friends)", mean(num_friends))
print("median(num_friends)", median(num_friends))

print("quantile(num_friends, 0.10)", quantile(num_friends, 0.10))
print("quantile(num_friends, 0.25)", quantile(num_friends, 0.25))
print("quantile(num_friends, 0.75)", quantile(num_friends, 0.75))
print("quantile(num_friends, 0.90)", quantile(num_friends, 0.90))

print("mode(num_friends)", mode(num_friends))
print("data_range(num_friends)", data_range(num_friends))
print("variance(num_friends)", variance(num_friends))
print("standard_deviation(num_friends)", standard_deviation(num_friends))
print("interquartile_range(num_friends)", interquartile_range(num_friends))

print("covariance(num_friends, daily_minutes)", covariance(num_friends, daily_minutes))
print("correlation(num_friends, daily_minutes)", correlation(num_friends, daily_minutes))
print("correlation(num_friends_good, daily_minutes_good)", correlation(num_friends_good, daily_minutes_good))

In [ ]:
print(num_friends)