In [1]:
#Purpose: import from other notebook...
#Ref: http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Importing%20Notebooks.html
import io, os, sys, types
from IPython import get_ipython
from nbformat import read
from IPython.core.interactiveshell import InteractiveShell
#--------------------------------------------------------------------------------
def find_notebook(fullname, path=None):
    """find a notebook, given its fully qualified name and an optional path
    
    This turns "foo.bar" into "foo/bar.ipynb"
    and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
    does not exist.
    """
    name = fullname.rsplit('.', 1)[-1]
    if not path:
        path = ['']
    for d in path:
        nb_path = os.path.join(d, name + ".ipynb")
        if os.path.isfile(nb_path):
            return nb_path
        # let import Notebook_Name find "Notebook Name.ipynb"
        nb_path = nb_path.replace("_", " ")
        if os.path.isfile(nb_path):
            return nb_path
#--------------------------------------------------------------------------------
class NotebookLoader(object):
    """Module Loader for Jupyter Notebooks"""
    def __init__(self, path=None):
        self.shell = InteractiveShell.instance()
        self.path = path
    
    def load_module(self, fullname):
        """import a notebook as a module"""
        path = find_notebook(fullname, self.path)
        
        print ("importing Jupyter notebook from %s" % path)
                                       
        # load the notebook object
        with io.open(path, 'r', encoding='utf-8') as f:
            nb = read(f, 4)
        
        
        # create the module and add it to sys.modules
        # if name in sys.modules:
        #    return sys.modules[name]
        mod = types.ModuleType(fullname)
        mod.__file__ = path
        mod.__loader__ = self
        mod.__dict__['get_ipython'] = get_ipython
        sys.modules[fullname] = mod
        
        # extra work to ensure that magics that would affect the user_ns
        # actually affect the notebook module's ns
        save_user_ns = self.shell.user_ns
        self.shell.user_ns = mod.__dict__
        
        try:
          for cell in nb.cells:
            if cell.cell_type == 'code':
                # transform the input to executable Python
                code = self.shell.input_transformer_manager.transform_cell(cell.source)
                # run the code in themodule
                exec(code, mod.__dict__)
        finally:
            self.shell.user_ns = save_user_ns
        return mod
#--------------------------------------------------------------------------------
class NotebookFinder(object):
    """Module finder that locates Jupyter Notebooks"""
    def __init__(self):
        self.loaders = {}
    
    def find_module(self, fullname, path=None):
        nb_path = find_notebook(fullname, path)
        if not nb_path:
            return
        
        key = path
        if path:
            # lists aren't hashable
            key = os.path.sep.join(path)
        
        if key not in self.loaders:
            self.loaders[key] = NotebookLoader(path)
        return self.loaders[key]
#--------------------------------------------------------------------------------
sys.meta_path.append(NotebookFinder())

In [2]:
from collections import Counter, defaultdict
from cm_utils import split_data
import math, random, re, glob
#--------------------------------------------------------------------------------
def tokenize(message):
    message = message.lower()                       # convert to lowercase
    all_words = re.findall("[a-z0-9']+", message)   # extract the words
    return set(all_words)                           # remove duplicates
#--------------------------------------------------------------------------------
def count_words(training_set):
    """training set consists of pairs (message, is_spam)"""
    counts = defaultdict(lambda: [0, 0])
    for message, is_spam in training_set:
        for word in tokenize(message):
            counts[word][0 if is_spam else 1] += 1
    return counts
#--------------------------------------------------------------------------------
def word_probabilities(counts, total_spams, total_non_spams, k=0.5):
    """turn the word_counts into a list of triplets 
    w, p(w | spam) and p(w | ~spam)"""
    return [(w,
             (spam + k) / (total_spams + 2 * k),
             (non_spam + k) / (total_non_spams + 2 * k))
             for w, (spam, non_spam) in iter(counts.items())] #counts.iteritems()] #python2x
#--------------------------------------------------------------------------------
def spam_probability(word_probs, message):
    message_words = tokenize(message)
    log_prob_if_spam = log_prob_if_not_spam = 0.0

    for word, prob_if_spam, prob_if_not_spam in word_probs:

        # for each word in the message, 
        # add the log probability of seeing it 
        if word in message_words:
            log_prob_if_spam += math.log(prob_if_spam)
            log_prob_if_not_spam += math.log(prob_if_not_spam)

        # for each word that's not in the message
        # add the log probability of _not_ seeing it
        else:
            log_prob_if_spam += math.log(1.0 - prob_if_spam)
            log_prob_if_not_spam += math.log(1.0 - prob_if_not_spam)
            
    prob_if_spam = math.exp(log_prob_if_spam)
    prob_if_not_spam = math.exp(log_prob_if_not_spam)
    return prob_if_spam / (prob_if_spam + prob_if_not_spam)
#--------------------------------------------------------------------------------

class NaiveBayesClassifier:

    def __init__(self, k=0.5):
        self.k = k
        self.word_probs = []
    #----------------------------------------------------------------------------
    def train(self, training_set):
    
        # count spam and non-spam messages
        num_spams = len([is_spam 
                         for message, is_spam in training_set 
                         if is_spam])
        num_non_spams = len(training_set) - num_spams

        # run training data through our "pipeline"
        word_counts = count_words(training_set)
        self.word_probs = word_probabilities(word_counts, 
                                             num_spams, 
                                             num_non_spams,
                                             self.k)
    #----------------------------------------------------------------------------                                        
    def classify(self, message):
        return spam_probability(self.word_probs, message)

#--------------------------------------------------------------------------------
def get_subject_data(path):

    data = []

    # regex for stripping out the leading "Subject:" and any spaces after it
    subject_regex = re.compile(r"^Subject:\s+")

    # glob.glob returns every filename that matches the wildcarded path
    for fn in glob.glob(path):
        is_spam = "ham" not in fn
        
        with open(fn,'r') as file:
            for line in file:
                if line.startswith("Subject:"):
                    subject = subject_regex.sub("", line).strip()
                    data.append((subject, is_spam))

    return data
#--------------------------------------------------------------------------------
def p_spam_given_word(word_prob):
    word, prob_if_spam, prob_if_not_spam = word_prob
    return prob_if_spam / (prob_if_spam + prob_if_not_spam)
#--------------------------------------------------------------------------------
def train_and_test_model(path):

    data = get_subject_data(path)
    random.seed(0)      # just so you get the same answers as me
    train_data, test_data = split_data(data, 0.75)    

    classifier = NaiveBayesClassifier()
    classifier.train(train_data)

    classified = [(subject, is_spam, classifier.classify(subject))
              for subject, is_spam in test_data]

    counts = Counter((is_spam, spam_probability > 0.5) # (actual, predicted)
                     for _, is_spam, spam_probability in classified)

    print(counts)

    classified.sort(key=lambda row: row[2])
    #spammiest_hams = filter(lambda row: not row[1], classified)[-5:] #python2x
    spammiest_hams = list(filter(lambda row: not row[1], classified))[-5:] #python3x, we should convert a iterable filter object to a list
    hammiest_spams = list(filter(lambda row: row[1], classified))[:5]

    print("spammiest_hams", spammiest_hams)
    print("hammiest_spams", hammiest_spams)

    words = sorted(classifier.word_probs, key=p_spam_given_word)

    spammiest_words = words[-5:]
    hammiest_words = words[:5]

    print("spammiest_words", spammiest_words)
    print("hammiest_words", hammiest_words)


importing Jupyter notebook from cm_utils.ipynb

In [3]:
if __name__ == "__main__":
    train_and_test_model(r"c:\spam\*\*")


Counter()
spammiest_hams []
hammiest_spams []
spammiest_words []
hammiest_words []