Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile('cifar-10-python.tar.gz'):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            'cifar-10-python.tar.gz',
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open('cifar-10-python.tar.gz') as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 4
sample_id = 2
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 4:
Samples: 10000
Label Counts: {0: 1003, 1: 963, 2: 1041, 3: 976, 4: 1004, 5: 1021, 6: 1004, 7: 981, 8: 1024, 9: 983}
First 20 Labels: [0, 6, 0, 2, 7, 2, 1, 2, 4, 1, 5, 6, 6, 3, 1, 3, 5, 5, 8, 1]

Example of Image 2:
Image - Min Value: 2 Max Value: 204
Image - Shape: (32, 32, 3)
Label - Label Id: 0 Name: airplane

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    output = np.ndarray(shape=x.shape, dtype=float) # Do NOT save in X directly, wrong datatype *lessons learned*

    for i in range(x.shape[0]):
        output[i,:,:,:] = x[i,:,:,:] /float(255)
    return output

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [4]:
def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    number_of_classes = 10
    number_of_labels = len(x)
    one_hot_encode = np.zeros((number_of_labels, number_of_classes), dtype=np.int)
    for i in range(number_of_labels):
        one_hot_encode[i, x[i]] = 1
    return one_hot_encode
    
    #Other solution?
    #from sklearn import preprocessing
    #labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    #label_encoder = preprocessing.LabelEncoder()
    #label_binarizer = preprocessing.LabelBinarizer()
    #encoded_labels = label_encoder.fit_transform(labels)
    #label_binarizer.fit(encoded_labels)
    #return(label_binarizer.transform(x))
    

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [5]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [6]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [7]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a bach of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
    x = tf.placeholder(tf.float32, shape=[None, image_shape[0], image_shape[1], image_shape[2]], name='x')
    return x


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    y = tf.placeholder(tf.float32, shape = [None, n_classes], name='y')
    return y


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    return keep_prob


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [8]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # Var prep
    datasize = x_tensor.get_shape().as_list()[0] # if I use it, test fails
    channels = x_tensor.get_shape().as_list()[3]
    
    conv_weights = tf.Variable(tf.truncated_normal([conv_ksize[0],
                                                    conv_ksize[1],
                                                    channels,
                                                    conv_num_outputs],
                                                   mean=0.0,
                                                   stddev=0.05, 
                                                   dtype=tf.float32))
    bias = tf.Variable(tf.zeros([conv_num_outputs]))
    padding = 'SAME'
    convu_strides2 = [1, conv_strides[0], conv_strides[1], 1] # batch, height, width, depth
    pooling_strides = [1, pool_strides[0], pool_strides[1], 1]
        
    # Layers
    conv = tf.nn.conv2d(x_tensor, conv_weights, convu_strides2, padding)
    conv = tf.nn.bias_add(conv, bias)
    relu = tf.nn.relu(conv)
    pooling = tf.nn.max_pool(relu, [1, pool_ksize[0], pool_ksize[1], 1], pooling_strides, padding)
    return pooling

    #DO NOT USE THIS IMPLEMENTATION, BUT FOR DEBUGGING OKAY ;)
    #conv2 = tf.layers.conv2d(x_tensor,
    #                         conv_num_outputs,
    #                         conv_ksize,
    #                         conv_strides,
    #                         padding='SAME',
    #                         data_format='channels_last',
    #                         dilation_rate=(1, 1),
    #                         activation=tf.nn.relu,
    #                         use_bias=True,
    #                         kernel_initializer=None,
    #                         bias_initializer=tf.zeros_initializer(),
    #                         kernel_regularizer=None,
    #                         bias_regularizer=None,
    #                         activity_regularizer=None,
    #                         trainable=True,
    #                         name=None,
    #                         reuse=None)
    #pooling2 = tf.layers.max_pooling2d(conv2,
    #                                   pool_ksize,
    #                                   pool_strides,
    #                                   padding='SAME',
    #                                   data_format='channels_last',
    #                                   name=None)
    #return pooling2

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [9]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    dim = np.prod(shape[1:])
    return tf.reshape(x_tensor, [-1, dim])
    #return tf.contrib.layers.flatten(x_tensor)
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [10]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # Variables
    datasize = x_tensor.get_shape().as_list()[1]
    weights = tf.Variable(tf.truncated_normal([datasize, num_outputs], mean=0.0, stddev=0.05))
    bias = tf.Variable(tf.zeros(num_outputs))
    
    #Calc
    fc = tf.add(tf.matmul(x_tensor, weights), bias)
    return tf.nn.relu(fc)
    #return tf.contrib.layers.fully_connected(x_tensor, num_outputs, activation_fn=tf.nn.relu)

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [11]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # Variables
    datasize = x_tensor.get_shape().as_list()[1]
    weights = tf.Variable(tf.truncated_normal([datasize, num_outputs], mean=0.0, stddev=0.05))
    bias = tf.Variable(tf.zeros(num_outputs))
    
    #Calc
    fc = tf.add(tf.matmul(x_tensor, weights), bias)
    return fc
    #return tf.contrib.layers.fully_connected(x_tensor, num_outputs, activation_fn=None)

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [12]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    
    #Variables
    pool_ksize = (2, 2)
    pool_strides = (2, 2)
    
    conv1_num_outputs = 32
    conv1_ksize = (3, 3)
    conv1_strides = (1, 1)
        
    conv2_num_outputs = 64
    conv2_ksize = (3, 3)
    conv2_strides = (1, 1)
    
    conv3_num_outputs = 40
    conv3_ksize = (5, 5)
    conv3_strides = (1, 1)
    
    num_classes = 10
    
    
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)

    conv1 = conv2d_maxpool(x, conv1_num_outputs, conv1_ksize, conv1_strides, pool_ksize, pool_strides)
    conv2 = conv2d_maxpool(conv1, conv2_num_outputs, conv2_ksize, conv2_strides, pool_ksize, pool_strides)
    #conv3 = conv2d_maxpool(conv2, conv3_num_outputs, conv3_ksize, conv3_strides, pool_ksize, pool_strides)
    
    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    flattened = flatten(conv2)    

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    fc1 = fully_conn(flattened, 64)
    fc1 = tf.nn.dropout(fc1, keep_prob)
    fc2 = fully_conn(flattened, 32)
    fc2 = tf.nn.dropout(fc1, keep_prob)
    
    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    output = fully_conn(fc2, num_classes)
    
    # TODO: return output
    return output


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [13]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    session.run(optimizer, feed_dict={x: feature_batch,
                                      y: label_batch,
                                      keep_prob: keep_probability})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [14]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    loss = session.run(accuracy, feed_dict = {x: feature_batch,
                                            y: label_batch, 
                                            keep_prob: 1.})
    valid_acc = session.run(accuracy, feed_dict = {x: valid_features, 
                                                   y: valid_labels, 
                                                   keep_prob: 1.})
    print('Loss: {}, Validation Accuracy: {}'.format(
                loss,
                valid_acc))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [15]:
# TODO: Tune Parameters
epochs = 30
batch_size = 128
keep_probability = 0.75

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [16]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss: 0.20000000298023224, Validation Accuracy: 0.3028000295162201
Epoch  2, CIFAR-10 Batch 1:  Loss: 0.30000001192092896, Validation Accuracy: 0.3535999655723572
Epoch  3, CIFAR-10 Batch 1:  Loss: 0.375, Validation Accuracy: 0.41759994626045227
Epoch  4, CIFAR-10 Batch 1:  Loss: 0.4000000059604645, Validation Accuracy: 0.45079997181892395
Epoch  5, CIFAR-10 Batch 1:  Loss: 0.42500001192092896, Validation Accuracy: 0.4567999839782715
Epoch  6, CIFAR-10 Batch 1:  Loss: 0.42500001192092896, Validation Accuracy: 0.47419995069503784
Epoch  7, CIFAR-10 Batch 1:  Loss: 0.4749999940395355, Validation Accuracy: 0.4813999533653259
Epoch  8, CIFAR-10 Batch 1:  Loss: 0.5249999761581421, Validation Accuracy: 0.48079997301101685
Epoch  9, CIFAR-10 Batch 1:  Loss: 0.550000011920929, Validation Accuracy: 0.4915999472141266
Epoch 10, CIFAR-10 Batch 1:  Loss: 0.550000011920929, Validation Accuracy: 0.506399929523468
Epoch 11, CIFAR-10 Batch 1:  Loss: 0.6000000238418579, Validation Accuracy: 0.5047999620437622
Epoch 12, CIFAR-10 Batch 1:  Loss: 0.625, Validation Accuracy: 0.507599949836731
Epoch 13, CIFAR-10 Batch 1:  Loss: 0.6500000357627869, Validation Accuracy: 0.511199951171875
Epoch 14, CIFAR-10 Batch 1:  Loss: 0.6500000357627869, Validation Accuracy: 0.5157999396324158
Epoch 15, CIFAR-10 Batch 1:  Loss: 0.6750000715255737, Validation Accuracy: 0.5349999070167542
Epoch 16, CIFAR-10 Batch 1:  Loss: 0.7250000238418579, Validation Accuracy: 0.53739994764328
Epoch 17, CIFAR-10 Batch 1:  Loss: 0.7250000238418579, Validation Accuracy: 0.5365999341011047
Epoch 18, CIFAR-10 Batch 1:  Loss: 0.75, Validation Accuracy: 0.5377999544143677
Epoch 19, CIFAR-10 Batch 1:  Loss: 0.7000000476837158, Validation Accuracy: 0.542199969291687
Epoch 20, CIFAR-10 Batch 1:  Loss: 0.75, Validation Accuracy: 0.5431999564170837
Epoch 21, CIFAR-10 Batch 1:  Loss: 0.7250000238418579, Validation Accuracy: 0.546799898147583
Epoch 22, CIFAR-10 Batch 1:  Loss: 0.7250000238418579, Validation Accuracy: 0.5493999719619751
Epoch 23, CIFAR-10 Batch 1:  Loss: 0.75, Validation Accuracy: 0.5453999042510986
Epoch 24, CIFAR-10 Batch 1:  Loss: 0.7749999761581421, Validation Accuracy: 0.556999921798706
Epoch 25, CIFAR-10 Batch 1:  Loss: 0.7749999761581421, Validation Accuracy: 0.5457999110221863
Epoch 26, CIFAR-10 Batch 1:  Loss: 0.8000000715255737, Validation Accuracy: 0.550399899482727
Epoch 27, CIFAR-10 Batch 1:  Loss: 0.8000000715255737, Validation Accuracy: 0.5491999387741089
Epoch 28, CIFAR-10 Batch 1:  Loss: 0.8250000476837158, Validation Accuracy: 0.5531999468803406
Epoch 29, CIFAR-10 Batch 1:  Loss: 0.8500000238418579, Validation Accuracy: 0.5525999665260315
Epoch 30, CIFAR-10 Batch 1:  Loss: 0.8500000238418579, Validation Accuracy: 0.5557999014854431

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [17]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss: 0.22500000894069672, Validation Accuracy: 0.29420000314712524
Epoch  1, CIFAR-10 Batch 2:  Loss: 0.375, Validation Accuracy: 0.38979995250701904
Epoch  1, CIFAR-10 Batch 3:  Loss: 0.45000001788139343, Validation Accuracy: 0.40059998631477356
Epoch  1, CIFAR-10 Batch 4:  Loss: 0.3499999940395355, Validation Accuracy: 0.43039998412132263
Epoch  1, CIFAR-10 Batch 5:  Loss: 0.3499999940395355, Validation Accuracy: 0.43199998140335083
Epoch  2, CIFAR-10 Batch 1:  Loss: 0.3999999761581421, Validation Accuracy: 0.47519999742507935
Epoch  2, CIFAR-10 Batch 2:  Loss: 0.4750000238418579, Validation Accuracy: 0.47819995880126953
Epoch  2, CIFAR-10 Batch 3:  Loss: 0.5249999761581421, Validation Accuracy: 0.4809999465942383
Epoch  2, CIFAR-10 Batch 4:  Loss: 0.42500001192092896, Validation Accuracy: 0.47839996218681335
Epoch  2, CIFAR-10 Batch 5:  Loss: 0.5750000476837158, Validation Accuracy: 0.5051999688148499
Epoch  3, CIFAR-10 Batch 1:  Loss: 0.42500001192092896, Validation Accuracy: 0.5127999782562256
Epoch  3, CIFAR-10 Batch 2:  Loss: 0.5250000357627869, Validation Accuracy: 0.507599949836731
Epoch  3, CIFAR-10 Batch 3:  Loss: 0.625, Validation Accuracy: 0.5317999124526978
Epoch  3, CIFAR-10 Batch 4:  Loss: 0.5, Validation Accuracy: 0.5255999565124512
Epoch  3, CIFAR-10 Batch 5:  Loss: 0.550000011920929, Validation Accuracy: 0.5382000207901001
Epoch  4, CIFAR-10 Batch 1:  Loss: 0.5, Validation Accuracy: 0.5353999137878418
Epoch  4, CIFAR-10 Batch 2:  Loss: 0.5250000357627869, Validation Accuracy: 0.550399899482727
Epoch  4, CIFAR-10 Batch 3:  Loss: 0.625, Validation Accuracy: 0.5529999136924744
Epoch  4, CIFAR-10 Batch 4:  Loss: 0.5, Validation Accuracy: 0.548799991607666
Epoch  4, CIFAR-10 Batch 5:  Loss: 0.625, Validation Accuracy: 0.5559999346733093
Epoch  5, CIFAR-10 Batch 1:  Loss: 0.550000011920929, Validation Accuracy: 0.5725999474525452
Epoch  5, CIFAR-10 Batch 2:  Loss: 0.550000011920929, Validation Accuracy: 0.5651999711990356
Epoch  5, CIFAR-10 Batch 3:  Loss: 0.7000000476837158, Validation Accuracy: 0.5653999447822571
Epoch  5, CIFAR-10 Batch 4:  Loss: 0.6000000238418579, Validation Accuracy: 0.5711999535560608
Epoch  5, CIFAR-10 Batch 5:  Loss: 0.7250000238418579, Validation Accuracy: 0.5879999399185181
Epoch  6, CIFAR-10 Batch 1:  Loss: 0.625, Validation Accuracy: 0.5939998626708984
Epoch  6, CIFAR-10 Batch 2:  Loss: 0.574999988079071, Validation Accuracy: 0.5965999364852905
Epoch  6, CIFAR-10 Batch 3:  Loss: 0.625, Validation Accuracy: 0.591999888420105
Epoch  6, CIFAR-10 Batch 4:  Loss: 0.6500000357627869, Validation Accuracy: 0.6057999134063721
Epoch  6, CIFAR-10 Batch 5:  Loss: 0.699999988079071, Validation Accuracy: 0.5989999175071716
Epoch  7, CIFAR-10 Batch 1:  Loss: 0.625, Validation Accuracy: 0.6043999195098877
Epoch  7, CIFAR-10 Batch 2:  Loss: 0.7000000476837158, Validation Accuracy: 0.608799934387207
Epoch  7, CIFAR-10 Batch 3:  Loss: 0.7250000238418579, Validation Accuracy: 0.5981999635696411
Epoch  7, CIFAR-10 Batch 4:  Loss: 0.7000000476837158, Validation Accuracy: 0.6137999296188354
Epoch  7, CIFAR-10 Batch 5:  Loss: 0.7250000238418579, Validation Accuracy: 0.6111999154090881
Epoch  8, CIFAR-10 Batch 1:  Loss: 0.7000000476837158, Validation Accuracy: 0.6065999269485474
Epoch  8, CIFAR-10 Batch 2:  Loss: 0.6749999523162842, Validation Accuracy: 0.6207998991012573
Epoch  8, CIFAR-10 Batch 3:  Loss: 0.7250000238418579, Validation Accuracy: 0.6207998991012573
Epoch  8, CIFAR-10 Batch 4:  Loss: 0.7750000357627869, Validation Accuracy: 0.6215999722480774
Epoch  8, CIFAR-10 Batch 5:  Loss: 0.7500000596046448, Validation Accuracy: 0.622999906539917
Epoch  9, CIFAR-10 Batch 1:  Loss: 0.6750000715255737, Validation Accuracy: 0.627799928188324
Epoch  9, CIFAR-10 Batch 2:  Loss: 0.6749999523162842, Validation Accuracy: 0.6271998882293701
Epoch  9, CIFAR-10 Batch 3:  Loss: 0.7250000238418579, Validation Accuracy: 0.6303998231887817
Epoch  9, CIFAR-10 Batch 4:  Loss: 0.7749999761581421, Validation Accuracy: 0.6419999003410339
Epoch  9, CIFAR-10 Batch 5:  Loss: 0.7250000238418579, Validation Accuracy: 0.6367999315261841
Epoch 10, CIFAR-10 Batch 1:  Loss: 0.75, Validation Accuracy: 0.6353998780250549
Epoch 10, CIFAR-10 Batch 2:  Loss: 0.7749999761581421, Validation Accuracy: 0.650399923324585
Epoch 10, CIFAR-10 Batch 3:  Loss: 0.7749999761581421, Validation Accuracy: 0.6517998576164246
Epoch 10, CIFAR-10 Batch 4:  Loss: 0.7999999523162842, Validation Accuracy: 0.6479998826980591
Epoch 10, CIFAR-10 Batch 5:  Loss: 0.7750000357627869, Validation Accuracy: 0.6391999125480652
Epoch 11, CIFAR-10 Batch 1:  Loss: 0.75, Validation Accuracy: 0.6429998874664307
Epoch 11, CIFAR-10 Batch 2:  Loss: 0.7250000238418579, Validation Accuracy: 0.6501998901367188
Epoch 11, CIFAR-10 Batch 3:  Loss: 0.8500000238418579, Validation Accuracy: 0.6545999050140381
Epoch 11, CIFAR-10 Batch 4:  Loss: 0.7750000357627869, Validation Accuracy: 0.6439999341964722
Epoch 11, CIFAR-10 Batch 5:  Loss: 0.7750000357627869, Validation Accuracy: 0.6413998603820801
Epoch 12, CIFAR-10 Batch 1:  Loss: 0.7750000357627869, Validation Accuracy: 0.6619998812675476
Epoch 12, CIFAR-10 Batch 2:  Loss: 0.8500000834465027, Validation Accuracy: 0.6569998264312744
Epoch 12, CIFAR-10 Batch 3:  Loss: 0.8500000238418579, Validation Accuracy: 0.6585999131202698
Epoch 12, CIFAR-10 Batch 4:  Loss: 0.8250000476837158, Validation Accuracy: 0.655799925327301
Epoch 12, CIFAR-10 Batch 5:  Loss: 0.7500000596046448, Validation Accuracy: 0.6425999402999878
Epoch 13, CIFAR-10 Batch 1:  Loss: 0.7749999761581421, Validation Accuracy: 0.662199854850769
Epoch 13, CIFAR-10 Batch 2:  Loss: 0.8500000834465027, Validation Accuracy: 0.6631998419761658
Epoch 13, CIFAR-10 Batch 3:  Loss: 0.875, Validation Accuracy: 0.6705998778343201
Epoch 13, CIFAR-10 Batch 4:  Loss: 0.8000000715255737, Validation Accuracy: 0.660399854183197
Epoch 13, CIFAR-10 Batch 5:  Loss: 0.7750000953674316, Validation Accuracy: 0.6589999198913574
Epoch 14, CIFAR-10 Batch 1:  Loss: 0.800000011920929, Validation Accuracy: 0.6505998969078064
Epoch 14, CIFAR-10 Batch 2:  Loss: 0.9000000357627869, Validation Accuracy: 0.658599853515625
Epoch 14, CIFAR-10 Batch 3:  Loss: 0.8750000596046448, Validation Accuracy: 0.6775999069213867
Epoch 14, CIFAR-10 Batch 4:  Loss: 0.8500000238418579, Validation Accuracy: 0.6667999029159546
Epoch 14, CIFAR-10 Batch 5:  Loss: 0.8500000238418579, Validation Accuracy: 0.6517998576164246
Epoch 15, CIFAR-10 Batch 1:  Loss: 0.7750000357627869, Validation Accuracy: 0.6755998730659485
Epoch 15, CIFAR-10 Batch 2:  Loss: 0.8500000238418579, Validation Accuracy: 0.6709998250007629
Epoch 15, CIFAR-10 Batch 3:  Loss: 0.9000000357627869, Validation Accuracy: 0.6723998785018921
Epoch 15, CIFAR-10 Batch 4:  Loss: 0.800000011920929, Validation Accuracy: 0.6757998466491699
Epoch 15, CIFAR-10 Batch 5:  Loss: 0.8500000238418579, Validation Accuracy: 0.6611998677253723
Epoch 16, CIFAR-10 Batch 1:  Loss: 0.7750000357627869, Validation Accuracy: 0.6761998534202576
Epoch 16, CIFAR-10 Batch 2:  Loss: 0.8250000476837158, Validation Accuracy: 0.6805998086929321
Epoch 16, CIFAR-10 Batch 3:  Loss: 0.925000011920929, Validation Accuracy: 0.6773998737335205
Epoch 16, CIFAR-10 Batch 4:  Loss: 0.8750000596046448, Validation Accuracy: 0.6697998642921448
Epoch 16, CIFAR-10 Batch 5:  Loss: 0.8999999761581421, Validation Accuracy: 0.66159987449646
Epoch 17, CIFAR-10 Batch 1:  Loss: 0.7749999761581421, Validation Accuracy: 0.6787998676300049
Epoch 17, CIFAR-10 Batch 2:  Loss: 0.9000000357627869, Validation Accuracy: 0.6813998818397522
Epoch 17, CIFAR-10 Batch 3:  Loss: 0.925000011920929, Validation Accuracy: 0.6835998296737671
Epoch 17, CIFAR-10 Batch 4:  Loss: 0.8750000596046448, Validation Accuracy: 0.6737999320030212
Epoch 17, CIFAR-10 Batch 5:  Loss: 0.8500000238418579, Validation Accuracy: 0.6631998419761658
Epoch 18, CIFAR-10 Batch 1:  Loss: 0.7749999761581421, Validation Accuracy: 0.672999918460846
Epoch 18, CIFAR-10 Batch 2:  Loss: 0.9000000357627869, Validation Accuracy: 0.6803998351097107
Epoch 18, CIFAR-10 Batch 3:  Loss: 0.925000011920929, Validation Accuracy: 0.6853998303413391
Epoch 18, CIFAR-10 Batch 4:  Loss: 0.8750000596046448, Validation Accuracy: 0.6789999008178711
Epoch 18, CIFAR-10 Batch 5:  Loss: 0.875, Validation Accuracy: 0.6701998710632324
Epoch 19, CIFAR-10 Batch 1:  Loss: 0.8250000476837158, Validation Accuracy: 0.6873998641967773
Epoch 19, CIFAR-10 Batch 2:  Loss: 0.9000000357627869, Validation Accuracy: 0.684199869632721
Epoch 19, CIFAR-10 Batch 3:  Loss: 0.949999988079071, Validation Accuracy: 0.6777998805046082
Epoch 19, CIFAR-10 Batch 4:  Loss: 0.8250000476837158, Validation Accuracy: 0.6751998662948608
Epoch 19, CIFAR-10 Batch 5:  Loss: 0.8500000238418579, Validation Accuracy: 0.6755998730659485
Epoch 20, CIFAR-10 Batch 1:  Loss: 0.8250000476837158, Validation Accuracy: 0.6817998886108398
Epoch 20, CIFAR-10 Batch 2:  Loss: 0.925000011920929, Validation Accuracy: 0.6833998560905457
Epoch 20, CIFAR-10 Batch 3:  Loss: 0.925000011920929, Validation Accuracy: 0.6857998967170715
Epoch 20, CIFAR-10 Batch 4:  Loss: 0.9000000357627869, Validation Accuracy: 0.6765998601913452
Epoch 20, CIFAR-10 Batch 5:  Loss: 0.875, Validation Accuracy: 0.6849998831748962
Epoch 21, CIFAR-10 Batch 1:  Loss: 0.800000011920929, Validation Accuracy: 0.6777998805046082
Epoch 21, CIFAR-10 Batch 2:  Loss: 0.9000000357627869, Validation Accuracy: 0.6879999041557312
Epoch 21, CIFAR-10 Batch 3:  Loss: 0.949999988079071, Validation Accuracy: 0.6819998621940613
Epoch 21, CIFAR-10 Batch 4:  Loss: 0.8250000476837158, Validation Accuracy: 0.6757999062538147
Epoch 21, CIFAR-10 Batch 5:  Loss: 0.8500000238418579, Validation Accuracy: 0.684199869632721
Epoch 22, CIFAR-10 Batch 1:  Loss: 0.824999988079071, Validation Accuracy: 0.6903999447822571
Epoch 22, CIFAR-10 Batch 2:  Loss: 0.925000011920929, Validation Accuracy: 0.6883998513221741
Epoch 22, CIFAR-10 Batch 3:  Loss: 0.949999988079071, Validation Accuracy: 0.6897999048233032
Epoch 22, CIFAR-10 Batch 4:  Loss: 0.9000000357627869, Validation Accuracy: 0.6889998316764832
Epoch 22, CIFAR-10 Batch 5:  Loss: 0.875, Validation Accuracy: 0.6807999014854431
Epoch 23, CIFAR-10 Batch 1:  Loss: 0.875, Validation Accuracy: 0.692599892616272
Epoch 23, CIFAR-10 Batch 2:  Loss: 0.8500000238418579, Validation Accuracy: 0.6933998465538025
Epoch 23, CIFAR-10 Batch 3:  Loss: 0.9749999642372131, Validation Accuracy: 0.6957998871803284
Epoch 23, CIFAR-10 Batch 4:  Loss: 0.8750000596046448, Validation Accuracy: 0.679399847984314
Epoch 23, CIFAR-10 Batch 5:  Loss: 0.8500000238418579, Validation Accuracy: 0.6903999447822571
Epoch 24, CIFAR-10 Batch 1:  Loss: 0.925000011920929, Validation Accuracy: 0.6953998804092407
Epoch 24, CIFAR-10 Batch 2:  Loss: 0.949999988079071, Validation Accuracy: 0.7033998370170593
Epoch 24, CIFAR-10 Batch 3:  Loss: 0.9749999642372131, Validation Accuracy: 0.7013998627662659
Epoch 24, CIFAR-10 Batch 4:  Loss: 0.9000000357627869, Validation Accuracy: 0.6871998906135559
Epoch 24, CIFAR-10 Batch 5:  Loss: 0.8999999761581421, Validation Accuracy: 0.6919999122619629
Epoch 25, CIFAR-10 Batch 1:  Loss: 0.925000011920929, Validation Accuracy: 0.6989998817443848
Epoch 25, CIFAR-10 Batch 2:  Loss: 0.949999988079071, Validation Accuracy: 0.7035998106002808
Epoch 25, CIFAR-10 Batch 3:  Loss: 0.9749999642372131, Validation Accuracy: 0.6971999406814575
Epoch 25, CIFAR-10 Batch 4:  Loss: 0.8750000596046448, Validation Accuracy: 0.6867998838424683
Epoch 25, CIFAR-10 Batch 5:  Loss: 0.875, Validation Accuracy: 0.6893998980522156
Epoch 26, CIFAR-10 Batch 1:  Loss: 0.925000011920929, Validation Accuracy: 0.6949998736381531
Epoch 26, CIFAR-10 Batch 2:  Loss: 0.949999988079071, Validation Accuracy: 0.6983998417854309
Epoch 26, CIFAR-10 Batch 3:  Loss: 0.9749999642372131, Validation Accuracy: 0.6871998906135559
Epoch 26, CIFAR-10 Batch 4:  Loss: 0.8750000596046448, Validation Accuracy: 0.6847999095916748
Epoch 26, CIFAR-10 Batch 5:  Loss: 0.9249999523162842, Validation Accuracy: 0.6951999068260193
Epoch 27, CIFAR-10 Batch 1:  Loss: 0.925000011920929, Validation Accuracy: 0.6943998336791992
Epoch 27, CIFAR-10 Batch 2:  Loss: 0.949999988079071, Validation Accuracy: 0.6955998539924622
Epoch 27, CIFAR-10 Batch 3:  Loss: 1.0, Validation Accuracy: 0.681999921798706
Epoch 27, CIFAR-10 Batch 4:  Loss: 0.925000011920929, Validation Accuracy: 0.6925998330116272
Epoch 27, CIFAR-10 Batch 5:  Loss: 0.9249999523162842, Validation Accuracy: 0.6929998993873596
Epoch 28, CIFAR-10 Batch 1:  Loss: 0.925000011920929, Validation Accuracy: 0.696199893951416
Epoch 28, CIFAR-10 Batch 2:  Loss: 0.949999988079071, Validation Accuracy: 0.7029998302459717
Epoch 28, CIFAR-10 Batch 3:  Loss: 0.9749999642372131, Validation Accuracy: 0.6945998668670654
Epoch 28, CIFAR-10 Batch 4:  Loss: 0.9000000357627869, Validation Accuracy: 0.6923999190330505
Epoch 28, CIFAR-10 Batch 5:  Loss: 0.949999988079071, Validation Accuracy: 0.6917998194694519
Epoch 29, CIFAR-10 Batch 1:  Loss: 0.949999988079071, Validation Accuracy: 0.6995999217033386
Epoch 29, CIFAR-10 Batch 2:  Loss: 0.9749999642372131, Validation Accuracy: 0.6915998458862305
Epoch 29, CIFAR-10 Batch 3:  Loss: 0.9749999642372131, Validation Accuracy: 0.7011998891830444
Epoch 29, CIFAR-10 Batch 4:  Loss: 0.925000011920929, Validation Accuracy: 0.6937998533248901
Epoch 29, CIFAR-10 Batch 5:  Loss: 0.925000011920929, Validation Accuracy: 0.6901999115943909
Epoch 30, CIFAR-10 Batch 1:  Loss: 0.949999988079071, Validation Accuracy: 0.6987998485565186
Epoch 30, CIFAR-10 Batch 2:  Loss: 0.9750000238418579, Validation Accuracy: 0.69899982213974
Epoch 30, CIFAR-10 Batch 3:  Loss: 0.949999988079071, Validation Accuracy: 0.6905999183654785
Epoch 30, CIFAR-10 Batch 4:  Loss: 0.949999988079071, Validation Accuracy: 0.6971998810768127
Epoch 30, CIFAR-10 Batch 5:  Loss: 0.949999988079071, Validation Accuracy: 0.6901998519897461

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [18]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.6942246835443038

Why 50-70% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 70%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.