Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Downloading mnist: 9.92MB [00:03, 3.02MB/s]                            
Extracting mnist: 100%|██████████| 60.0K/60.0K [00:10<00:00, 5.59KFile/s] 
Downloading celeba: 1.44GB [02:56, 8.17MB/s]                               
Extracting celeba...

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7f7d149dd4e0>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7f7d2c8724a8>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    input_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')
    input_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
    
    return input_real, input_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).


In [6]:
def discriminator(images, reuse=False, alpha=0.2):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :param alpha: Leaky ReLU factor (additionally added)
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    with tf.variable_scope('discriminator', reuse=reuse):       
        # Image size is 28x28x3
        x1 = tf.layers.conv2d(images, filters=64, kernel_size=5, strides=2, padding='same')
        x1 = tf.maximum(x1, x1 * alpha)
        
        # Image size is 14x14x64
        x2 = tf.layers.conv2d(x1, filters=128, kernel_size=5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=True)
        x2 = tf.maximum(x2, x2 * alpha)
        
        # Image size is 8x8x128
        x3 = tf.layers.conv2d(x2, filters=256, kernel_size=5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=True)
        x3 = tf.maximum(x3, x3 * alpha)
        
        flat = tf.reshape(x3, (-1, 8*8*128))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
    
    return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [7]:
def generator(z, out_channel_dim, is_train=True, alpha=0.2):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :param alpha: Leaky ReLU (added)
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    with tf.variable_scope('generator', reuse=not is_train):
        x1 = tf.layers.dense(z, 7*7*512, activation=None) 
        x1 = tf.reshape(x1, (-1, 7, 7, 512))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        x1 = tf.maximum(x1, x1 * alpha)
        # 7x7x256
        
        x2 = tf.layers.conv2d_transpose(x1, filters=256, kernel_size=5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        x2 = tf.maximum(x2, x2 * alpha)
        # 14x14x256
        
        x3 = tf.layers.conv2d_transpose(x2, filters=128, kernel_size=5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=is_train)
        x3 = tf.maximum(x3, x3 * alpha)
        # 28x28x128
        
        # Output layer 
        logits = tf.layers.conv2d_transpose(x3, filters=out_channel_dim, kernel_size=5, strides=1, padding='same')
        # 28 x 28 x outchannel_dim
        out = tf.tanh(logits)
    
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [8]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake
    
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [9]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [10]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [13]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    
    # TODO: Build Model with previous functions
    
    # Reset everything
    #tf.reset_default_graph()
    
    # Generate model
    input_real, input_z, lr = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3]) #mimic input channels
    d_train_opt, g_train_opt= model_opt(d_loss, g_loss, learning_rate, beta1)
    
    # Verbose variable
    steps = 0
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                steps +=1
                
                # Scale images
                batch_images *=2
                
                # Sample random noise for generator
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                # Run Optimizzzzzzzers
                _ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z, lr: learning_rate})
                _ = sess.run(g_train_opt, feed_dict={input_real: batch_images, input_z: batch_z, lr: learning_rate}) # needs images?
                
                # Verbose output
                if steps % 10 == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    
                if steps % 50 == 0:
                    show_generator_output(sess, 20, input_z, data_shape[3], data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [15]:
batch_size = 64
z_dim = 100
learning_rate = 0.001
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 0.0003... Generator Loss: 9.2217
Epoch 1/2... Discriminator Loss: 0.0005... Generator Loss: 8.6814
Epoch 1/2... Discriminator Loss: 0.1434... Generator Loss: 4.6119
Epoch 1/2... Discriminator Loss: 0.2314... Generator Loss: 4.4238
Epoch 1/2... Discriminator Loss: 0.2103... Generator Loss: 2.4236
Epoch 1/2... Discriminator Loss: 0.0962... Generator Loss: 3.3174
Epoch 1/2... Discriminator Loss: 0.4010... Generator Loss: 2.0004
Epoch 1/2... Discriminator Loss: 0.2555... Generator Loss: 2.3760
Epoch 1/2... Discriminator Loss: 0.2307... Generator Loss: 2.5229
Epoch 1/2... Discriminator Loss: 1.2331... Generator Loss: 0.8214
Epoch 1/2... Discriminator Loss: 0.8600... Generator Loss: 1.5832
Epoch 1/2... Discriminator Loss: 1.3825... Generator Loss: 2.9767
Epoch 1/2... Discriminator Loss: 0.9775... Generator Loss: 2.8653
Epoch 1/2... Discriminator Loss: 1.2461... Generator Loss: 1.9384
Epoch 1/2... Discriminator Loss: 0.6785... Generator Loss: 1.1590
Epoch 1/2... Discriminator Loss: 0.8472... Generator Loss: 1.4748
Epoch 1/2... Discriminator Loss: 0.6228... Generator Loss: 3.1615
Epoch 1/2... Discriminator Loss: 1.0717... Generator Loss: 0.6268
Epoch 1/2... Discriminator Loss: 1.2377... Generator Loss: 0.4794
Epoch 1/2... Discriminator Loss: 0.4881... Generator Loss: 1.6879
Epoch 1/2... Discriminator Loss: 0.6006... Generator Loss: 2.9215
Epoch 1/2... Discriminator Loss: 0.6294... Generator Loss: 2.0858
Epoch 1/2... Discriminator Loss: 2.7526... Generator Loss: 0.1016
Epoch 1/2... Discriminator Loss: 1.6577... Generator Loss: 0.3353
Epoch 1/2... Discriminator Loss: 1.5878... Generator Loss: 0.3504
Epoch 1/2... Discriminator Loss: 0.4856... Generator Loss: 1.3051
Epoch 1/2... Discriminator Loss: 5.6863... Generator Loss: 9.3003
Epoch 1/2... Discriminator Loss: 0.6967... Generator Loss: 1.1572
Epoch 1/2... Discriminator Loss: 0.3212... Generator Loss: 2.1230
Epoch 1/2... Discriminator Loss: 0.1615... Generator Loss: 4.4173
Epoch 1/2... Discriminator Loss: 0.4216... Generator Loss: 1.5568
Epoch 1/2... Discriminator Loss: 1.6563... Generator Loss: 3.4730
Epoch 1/2... Discriminator Loss: 0.8272... Generator Loss: 1.6974
Epoch 1/2... Discriminator Loss: 1.0722... Generator Loss: 2.8864
Epoch 1/2... Discriminator Loss: 0.7895... Generator Loss: 2.6679
Epoch 1/2... Discriminator Loss: 0.3861... Generator Loss: 1.6393
Epoch 1/2... Discriminator Loss: 1.1001... Generator Loss: 0.5680
Epoch 1/2... Discriminator Loss: 0.4316... Generator Loss: 1.4668
Epoch 1/2... Discriminator Loss: 3.0427... Generator Loss: 4.4817
Epoch 1/2... Discriminator Loss: 0.9137... Generator Loss: 0.8480
Epoch 1/2... Discriminator Loss: 1.2739... Generator Loss: 1.1993
Epoch 1/2... Discriminator Loss: 1.0825... Generator Loss: 1.6179
Epoch 1/2... Discriminator Loss: 0.9389... Generator Loss: 1.1538
Epoch 1/2... Discriminator Loss: 1.5026... Generator Loss: 0.3741
Epoch 1/2... Discriminator Loss: 1.4074... Generator Loss: 0.4804
Epoch 1/2... Discriminator Loss: 0.8335... Generator Loss: 1.0452
Epoch 1/2... Discriminator Loss: 1.3154... Generator Loss: 2.1507
Epoch 1/2... Discriminator Loss: 0.7413... Generator Loss: 1.4743
Epoch 1/2... Discriminator Loss: 1.2806... Generator Loss: 1.6650
Epoch 1/2... Discriminator Loss: 1.0916... Generator Loss: 0.7532
Epoch 1/2... Discriminator Loss: 1.4245... Generator Loss: 1.9527
Epoch 1/2... Discriminator Loss: 0.9399... Generator Loss: 1.5276
Epoch 1/2... Discriminator Loss: 0.9196... Generator Loss: 1.2837
Epoch 1/2... Discriminator Loss: 0.9030... Generator Loss: 1.0087
Epoch 1/2... Discriminator Loss: 0.8530... Generator Loss: 1.0557
Epoch 1/2... Discriminator Loss: 1.2281... Generator Loss: 2.3789
Epoch 1/2... Discriminator Loss: 0.7621... Generator Loss: 1.1573
Epoch 1/2... Discriminator Loss: 1.3365... Generator Loss: 0.5138
Epoch 1/2... Discriminator Loss: 0.9439... Generator Loss: 1.0301
Epoch 1/2... Discriminator Loss: 1.3964... Generator Loss: 0.3710
Epoch 1/2... Discriminator Loss: 0.9594... Generator Loss: 1.4392
Epoch 1/2... Discriminator Loss: 0.9742... Generator Loss: 0.9679
Epoch 1/2... Discriminator Loss: 1.0460... Generator Loss: 0.7054
Epoch 1/2... Discriminator Loss: 1.7157... Generator Loss: 3.0547
Epoch 1/2... Discriminator Loss: 1.4661... Generator Loss: 0.4444
Epoch 1/2... Discriminator Loss: 1.0447... Generator Loss: 0.7006
Epoch 1/2... Discriminator Loss: 0.8908... Generator Loss: 1.2311
Epoch 1/2... Discriminator Loss: 1.2882... Generator Loss: 1.1786
Epoch 1/2... Discriminator Loss: 0.9773... Generator Loss: 1.3302
Epoch 1/2... Discriminator Loss: 1.1542... Generator Loss: 1.6164
Epoch 1/2... Discriminator Loss: 1.1131... Generator Loss: 0.6465
Epoch 1/2... Discriminator Loss: 1.0689... Generator Loss: 0.7237
Epoch 1/2... Discriminator Loss: 1.0176... Generator Loss: 1.4326
Epoch 1/2... Discriminator Loss: 1.4196... Generator Loss: 0.6905
Epoch 1/2... Discriminator Loss: 1.2193... Generator Loss: 0.5113
Epoch 1/2... Discriminator Loss: 1.0488... Generator Loss: 0.8185
Epoch 1/2... Discriminator Loss: 1.0483... Generator Loss: 0.9818
Epoch 1/2... Discriminator Loss: 1.1719... Generator Loss: 0.6797
Epoch 1/2... Discriminator Loss: 1.5318... Generator Loss: 0.3298
Epoch 1/2... Discriminator Loss: 1.0701... Generator Loss: 0.7360
Epoch 1/2... Discriminator Loss: 1.1076... Generator Loss: 0.5841
Epoch 1/2... Discriminator Loss: 0.7724... Generator Loss: 1.5933
Epoch 1/2... Discriminator Loss: 1.0525... Generator Loss: 2.3472
Epoch 1/2... Discriminator Loss: 1.6800... Generator Loss: 0.3442
Epoch 1/2... Discriminator Loss: 1.4775... Generator Loss: 0.3877
Epoch 1/2... Discriminator Loss: 1.4097... Generator Loss: 0.4067
Epoch 1/2... Discriminator Loss: 0.9992... Generator Loss: 1.6861
Epoch 1/2... Discriminator Loss: 0.9602... Generator Loss: 0.7690
Epoch 1/2... Discriminator Loss: 0.9950... Generator Loss: 1.3792
Epoch 1/2... Discriminator Loss: 0.9942... Generator Loss: 1.6357
Epoch 1/2... Discriminator Loss: 1.2744... Generator Loss: 0.7221
Epoch 1/2... Discriminator Loss: 0.8934... Generator Loss: 0.9135
Epoch 1/2... Discriminator Loss: 1.0114... Generator Loss: 1.5837
Epoch 2/2... Discriminator Loss: 0.9562... Generator Loss: 0.8114
Epoch 2/2... Discriminator Loss: 1.2066... Generator Loss: 1.1140
Epoch 2/2... Discriminator Loss: 1.2219... Generator Loss: 0.4661
Epoch 2/2... Discriminator Loss: 1.3860... Generator Loss: 0.4892
Epoch 2/2... Discriminator Loss: 1.0427... Generator Loss: 0.6690
Epoch 2/2... Discriminator Loss: 0.9252... Generator Loss: 1.2227
Epoch 2/2... Discriminator Loss: 1.1650... Generator Loss: 0.5236
Epoch 2/2... Discriminator Loss: 0.7374... Generator Loss: 0.9943
Epoch 2/2... Discriminator Loss: 0.9877... Generator Loss: 1.0863
Epoch 2/2... Discriminator Loss: 1.3184... Generator Loss: 0.5140
Epoch 2/2... Discriminator Loss: 1.1869... Generator Loss: 0.6008
Epoch 2/2... Discriminator Loss: 1.0842... Generator Loss: 0.6413
Epoch 2/2... Discriminator Loss: 1.1986... Generator Loss: 1.7218
Epoch 2/2... Discriminator Loss: 1.4475... Generator Loss: 0.3860
Epoch 2/2... Discriminator Loss: 0.9663... Generator Loss: 0.6798
Epoch 2/2... Discriminator Loss: 1.5384... Generator Loss: 0.3759
Epoch 2/2... Discriminator Loss: 1.5097... Generator Loss: 0.3448
Epoch 2/2... Discriminator Loss: 1.0801... Generator Loss: 1.8774
Epoch 2/2... Discriminator Loss: 1.6360... Generator Loss: 2.1076
Epoch 2/2... Discriminator Loss: 0.9942... Generator Loss: 0.7787
Epoch 2/2... Discriminator Loss: 1.8518... Generator Loss: 0.2728
Epoch 2/2... Discriminator Loss: 0.9820... Generator Loss: 1.0145
Epoch 2/2... Discriminator Loss: 1.0473... Generator Loss: 0.9817
Epoch 2/2... Discriminator Loss: 1.0845... Generator Loss: 1.5769
Epoch 2/2... Discriminator Loss: 1.3070... Generator Loss: 0.5399
Epoch 2/2... Discriminator Loss: 1.2494... Generator Loss: 0.6703
Epoch 2/2... Discriminator Loss: 2.1575... Generator Loss: 0.2147
Epoch 2/2... Discriminator Loss: 1.2060... Generator Loss: 0.6135
Epoch 2/2... Discriminator Loss: 1.5659... Generator Loss: 0.4444
Epoch 2/2... Discriminator Loss: 1.0345... Generator Loss: 0.6834
Epoch 2/2... Discriminator Loss: 1.0520... Generator Loss: 1.2141
Epoch 2/2... Discriminator Loss: 1.0379... Generator Loss: 0.8419
Epoch 2/2... Discriminator Loss: 1.1007... Generator Loss: 1.9552
Epoch 2/2... Discriminator Loss: 1.0958... Generator Loss: 1.8137
Epoch 2/2... Discriminator Loss: 1.8733... Generator Loss: 0.2105
Epoch 2/2... Discriminator Loss: 0.7364... Generator Loss: 1.0993
Epoch 2/2... Discriminator Loss: 0.4463... Generator Loss: 1.8441
Epoch 2/2... Discriminator Loss: 1.5506... Generator Loss: 0.4589
Epoch 2/2... Discriminator Loss: 1.1295... Generator Loss: 0.7060
Epoch 2/2... Discriminator Loss: 0.9097... Generator Loss: 1.1759
Epoch 2/2... Discriminator Loss: 1.2952... Generator Loss: 0.4570
Epoch 2/2... Discriminator Loss: 0.9019... Generator Loss: 0.9865
Epoch 2/2... Discriminator Loss: 1.0822... Generator Loss: 0.7611
Epoch 2/2... Discriminator Loss: 0.9189... Generator Loss: 0.9769
Epoch 2/2... Discriminator Loss: 1.1589... Generator Loss: 0.5993
Epoch 2/2... Discriminator Loss: 1.1902... Generator Loss: 0.5807
Epoch 2/2... Discriminator Loss: 0.9066... Generator Loss: 1.0622
Epoch 2/2... Discriminator Loss: 1.1662... Generator Loss: 0.5986
Epoch 2/2... Discriminator Loss: 1.0923... Generator Loss: 0.6858
Epoch 2/2... Discriminator Loss: 0.8936... Generator Loss: 1.1656
Epoch 2/2... Discriminator Loss: 1.0871... Generator Loss: 1.3125
Epoch 2/2... Discriminator Loss: 0.9959... Generator Loss: 1.0821
Epoch 2/2... Discriminator Loss: 0.9028... Generator Loss: 0.8209
Epoch 2/2... Discriminator Loss: 0.8921... Generator Loss: 0.9585
Epoch 2/2... Discriminator Loss: 0.8503... Generator Loss: 1.0199
Epoch 2/2... Discriminator Loss: 0.8599... Generator Loss: 2.0664
Epoch 2/2... Discriminator Loss: 1.9142... Generator Loss: 3.1335
Epoch 2/2... Discriminator Loss: 1.7173... Generator Loss: 0.3237
Epoch 2/2... Discriminator Loss: 0.9573... Generator Loss: 1.0406
Epoch 2/2... Discriminator Loss: 0.8857... Generator Loss: 0.8572
Epoch 2/2... Discriminator Loss: 1.3997... Generator Loss: 1.8591
Epoch 2/2... Discriminator Loss: 1.4769... Generator Loss: 0.4171
Epoch 2/2... Discriminator Loss: 1.0302... Generator Loss: 0.8022
Epoch 2/2... Discriminator Loss: 0.9937... Generator Loss: 1.9087
Epoch 2/2... Discriminator Loss: 0.7240... Generator Loss: 1.2990
Epoch 2/2... Discriminator Loss: 0.8413... Generator Loss: 0.9377
Epoch 2/2... Discriminator Loss: 0.7568... Generator Loss: 1.0361
Epoch 2/2... Discriminator Loss: 1.0384... Generator Loss: 0.5923
Epoch 2/2... Discriminator Loss: 1.0350... Generator Loss: 0.8555
Epoch 2/2... Discriminator Loss: 0.7132... Generator Loss: 1.0846
Epoch 2/2... Discriminator Loss: 2.0742... Generator Loss: 0.1902
Epoch 2/2... Discriminator Loss: 0.8633... Generator Loss: 1.5171
Epoch 2/2... Discriminator Loss: 1.2389... Generator Loss: 1.0698
Epoch 2/2... Discriminator Loss: 1.1607... Generator Loss: 0.5935
Epoch 2/2... Discriminator Loss: 1.4423... Generator Loss: 2.6391
Epoch 2/2... Discriminator Loss: 0.8356... Generator Loss: 1.9283
Epoch 2/2... Discriminator Loss: 0.8252... Generator Loss: 1.0519
Epoch 2/2... Discriminator Loss: 0.6640... Generator Loss: 1.5580
Epoch 2/2... Discriminator Loss: 0.6429... Generator Loss: 2.0643
Epoch 2/2... Discriminator Loss: 1.8022... Generator Loss: 0.3024
Epoch 2/2... Discriminator Loss: 1.6993... Generator Loss: 0.2772
Epoch 2/2... Discriminator Loss: 1.2813... Generator Loss: 0.4333
Epoch 2/2... Discriminator Loss: 0.8431... Generator Loss: 1.0932
Epoch 2/2... Discriminator Loss: 0.8218... Generator Loss: 1.9432
Epoch 2/2... Discriminator Loss: 0.7139... Generator Loss: 1.2929
Epoch 2/2... Discriminator Loss: 1.3409... Generator Loss: 0.5471
Epoch 2/2... Discriminator Loss: 1.4699... Generator Loss: 0.4183
Epoch 2/2... Discriminator Loss: 1.0527... Generator Loss: 1.0311
Epoch 2/2... Discriminator Loss: 0.9303... Generator Loss: 0.9239
Epoch 2/2... Discriminator Loss: 0.7262... Generator Loss: 1.0686
Epoch 2/2... Discriminator Loss: 0.5426... Generator Loss: 1.2629
Epoch 2/2... Discriminator Loss: 1.3438... Generator Loss: 2.7268
Epoch 2/2... Discriminator Loss: 0.9477... Generator Loss: 2.6331
Epoch 2/2... Discriminator Loss: 1.1876... Generator Loss: 0.6566

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [16]:
batch_size = 64
z_dim = 100
learning_rate = 0.0005
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Discriminator Loss: 0.1806... Generator Loss: 20.1057
Epoch 1/1... Discriminator Loss: 0.0021... Generator Loss: 7.1220
Epoch 1/1... Discriminator Loss: 0.1760... Generator Loss: 2.9240
Epoch 1/1... Discriminator Loss: 0.6400... Generator Loss: 1.2965
Epoch 1/1... Discriminator Loss: 1.0205... Generator Loss: 0.7981
Epoch 1/1... Discriminator Loss: 0.6461... Generator Loss: 1.3035
Epoch 1/1... Discriminator Loss: 0.8758... Generator Loss: 0.8551
Epoch 1/1... Discriminator Loss: 0.6420... Generator Loss: 1.3338
Epoch 1/1... Discriminator Loss: 0.0199... Generator Loss: 9.9348
Epoch 1/1... Discriminator Loss: 0.1811... Generator Loss: 4.6349
Epoch 1/1... Discriminator Loss: 0.0845... Generator Loss: 3.7085
Epoch 1/1... Discriminator Loss: 0.2669... Generator Loss: 2.4581
Epoch 1/1... Discriminator Loss: 0.1434... Generator Loss: 4.9449
Epoch 1/1... Discriminator Loss: 1.8836... Generator Loss: 6.0855
Epoch 1/1... Discriminator Loss: 0.4994... Generator Loss: 1.3667
Epoch 1/1... Discriminator Loss: 2.4160... Generator Loss: 0.3855
Epoch 1/1... Discriminator Loss: 1.2650... Generator Loss: 0.6548
Epoch 1/1... Discriminator Loss: 1.3328... Generator Loss: 5.5229
Epoch 1/1... Discriminator Loss: 1.2643... Generator Loss: 1.1086
Epoch 1/1... Discriminator Loss: 1.3775... Generator Loss: 0.4731
Epoch 1/1... Discriminator Loss: 1.0404... Generator Loss: 1.9237
Epoch 1/1... Discriminator Loss: 0.9168... Generator Loss: 1.6249
Epoch 1/1... Discriminator Loss: 1.2879... Generator Loss: 0.8853
Epoch 1/1... Discriminator Loss: 1.6270... Generator Loss: 0.3126
Epoch 1/1... Discriminator Loss: 1.7874... Generator Loss: 0.3644
Epoch 1/1... Discriminator Loss: 0.6126... Generator Loss: 1.8281
Epoch 1/1... Discriminator Loss: 0.6973... Generator Loss: 1.5526
Epoch 1/1... Discriminator Loss: 0.6950... Generator Loss: 1.0606
Epoch 1/1... Discriminator Loss: 0.8968... Generator Loss: 1.0302
Epoch 1/1... Discriminator Loss: 1.6326... Generator Loss: 0.3477
Epoch 1/1... Discriminator Loss: 1.7742... Generator Loss: 0.3203
Epoch 1/1... Discriminator Loss: 2.6642... Generator Loss: 0.1053
Epoch 1/1... Discriminator Loss: 1.2213... Generator Loss: 2.4122
Epoch 1/1... Discriminator Loss: 1.6560... Generator Loss: 1.6548
Epoch 1/1... Discriminator Loss: 1.1393... Generator Loss: 2.3715
Epoch 1/1... Discriminator Loss: 1.5412... Generator Loss: 1.1993
Epoch 1/1... Discriminator Loss: 1.1144... Generator Loss: 1.0100
Epoch 1/1... Discriminator Loss: 1.1314... Generator Loss: 0.4959
Epoch 1/1... Discriminator Loss: 1.6105... Generator Loss: 1.4492
Epoch 1/1... Discriminator Loss: 1.3696... Generator Loss: 2.0030
Epoch 1/1... Discriminator Loss: 0.5185... Generator Loss: 1.3297
Epoch 1/1... Discriminator Loss: 1.8160... Generator Loss: 0.2320
Epoch 1/1... Discriminator Loss: 1.4091... Generator Loss: 0.4982
Epoch 1/1... Discriminator Loss: 0.8415... Generator Loss: 0.7631
Epoch 1/1... Discriminator Loss: 1.4585... Generator Loss: 0.4117
Epoch 1/1... Discriminator Loss: 1.9260... Generator Loss: 0.2191
Epoch 1/1... Discriminator Loss: 1.1539... Generator Loss: 0.5477
Epoch 1/1... Discriminator Loss: 0.9033... Generator Loss: 1.0096
Epoch 1/1... Discriminator Loss: 0.8135... Generator Loss: 1.2338
Epoch 1/1... Discriminator Loss: 2.2909... Generator Loss: 0.1332
Epoch 1/1... Discriminator Loss: 0.8137... Generator Loss: 1.1390
Epoch 1/1... Discriminator Loss: 1.2969... Generator Loss: 0.7404
Epoch 1/1... Discriminator Loss: 1.8016... Generator Loss: 1.8553
Epoch 1/1... Discriminator Loss: 2.0097... Generator Loss: 2.5253
Epoch 1/1... Discriminator Loss: 1.6732... Generator Loss: 1.5432
Epoch 1/1... Discriminator Loss: 0.7188... Generator Loss: 1.3499
Epoch 1/1... Discriminator Loss: 1.4836... Generator Loss: 0.3939
Epoch 1/1... Discriminator Loss: 1.1954... Generator Loss: 1.4262
Epoch 1/1... Discriminator Loss: 1.2093... Generator Loss: 0.9914
Epoch 1/1... Discriminator Loss: 1.1836... Generator Loss: 0.8539
Epoch 1/1... Discriminator Loss: 1.2236... Generator Loss: 0.9641
Epoch 1/1... Discriminator Loss: 1.4462... Generator Loss: 0.9091
Epoch 1/1... Discriminator Loss: 1.4243... Generator Loss: 1.3959
Epoch 1/1... Discriminator Loss: 1.0410... Generator Loss: 0.7814
Epoch 1/1... Discriminator Loss: 1.1961... Generator Loss: 2.2310
Epoch 1/1... Discriminator Loss: 1.5177... Generator Loss: 0.5140
Epoch 1/1... Discriminator Loss: 1.1508... Generator Loss: 1.2890
Epoch 1/1... Discriminator Loss: 1.4708... Generator Loss: 0.3677
Epoch 1/1... Discriminator Loss: 1.1130... Generator Loss: 0.7125
Epoch 1/1... Discriminator Loss: 1.4554... Generator Loss: 1.4327
Epoch 1/1... Discriminator Loss: 1.3561... Generator Loss: 1.5384
Epoch 1/1... Discriminator Loss: 1.1750... Generator Loss: 0.6778
Epoch 1/1... Discriminator Loss: 0.6663... Generator Loss: 1.6483
Epoch 1/1... Discriminator Loss: 0.9385... Generator Loss: 1.1779
Epoch 1/1... Discriminator Loss: 0.9159... Generator Loss: 1.1375
Epoch 1/1... Discriminator Loss: 1.1979... Generator Loss: 0.8007
Epoch 1/1... Discriminator Loss: 0.8422... Generator Loss: 4.2645
Epoch 1/1... Discriminator Loss: 1.5570... Generator Loss: 0.3324
Epoch 1/1... Discriminator Loss: 1.2186... Generator Loss: 0.7588
Epoch 1/1... Discriminator Loss: 1.4373... Generator Loss: 1.1920
Epoch 1/1... Discriminator Loss: 0.9197... Generator Loss: 0.9144
Epoch 1/1... Discriminator Loss: 1.1325... Generator Loss: 1.8498
Epoch 1/1... Discriminator Loss: 1.4526... Generator Loss: 0.4504
Epoch 1/1... Discriminator Loss: 0.9823... Generator Loss: 0.8306
Epoch 1/1... Discriminator Loss: 2.4280... Generator Loss: 0.1133
Epoch 1/1... Discriminator Loss: 1.2334... Generator Loss: 0.7507
Epoch 1/1... Discriminator Loss: 1.1155... Generator Loss: 0.7856
Epoch 1/1... Discriminator Loss: 1.5688... Generator Loss: 0.3057
Epoch 1/1... Discriminator Loss: 0.8638... Generator Loss: 0.7442
Epoch 1/1... Discriminator Loss: 1.0868... Generator Loss: 1.0857
Epoch 1/1... Discriminator Loss: 1.3658... Generator Loss: 0.8483
Epoch 1/1... Discriminator Loss: 1.3470... Generator Loss: 0.7042
Epoch 1/1... Discriminator Loss: 0.6313... Generator Loss: 1.4561
Epoch 1/1... Discriminator Loss: 0.8410... Generator Loss: 1.6069
Epoch 1/1... Discriminator Loss: 1.3760... Generator Loss: 0.4300
Epoch 1/1... Discriminator Loss: 0.5652... Generator Loss: 1.6628
Epoch 1/1... Discriminator Loss: 0.9305... Generator Loss: 0.7606
Epoch 1/1... Discriminator Loss: 1.0614... Generator Loss: 0.7935
Epoch 1/1... Discriminator Loss: 0.8947... Generator Loss: 1.9544
Epoch 1/1... Discriminator Loss: 1.0436... Generator Loss: 0.9411
Epoch 1/1... Discriminator Loss: 1.7303... Generator Loss: 0.2929
Epoch 1/1... Discriminator Loss: 1.7469... Generator Loss: 0.3921
Epoch 1/1... Discriminator Loss: 1.7715... Generator Loss: 0.2156
Epoch 1/1... Discriminator Loss: 0.8708... Generator Loss: 1.0331
Epoch 1/1... Discriminator Loss: 1.0355... Generator Loss: 1.7413
Epoch 1/1... Discriminator Loss: 1.1543... Generator Loss: 0.6633
Epoch 1/1... Discriminator Loss: 2.1341... Generator Loss: 0.1782
Epoch 1/1... Discriminator Loss: 1.4232... Generator Loss: 1.0835
Epoch 1/1... Discriminator Loss: 1.6911... Generator Loss: 0.3579
Epoch 1/1... Discriminator Loss: 1.1649... Generator Loss: 0.7552
Epoch 1/1... Discriminator Loss: 1.1933... Generator Loss: 0.9284
Epoch 1/1... Discriminator Loss: 1.1865... Generator Loss: 0.6618
Epoch 1/1... Discriminator Loss: 1.2050... Generator Loss: 0.6209
Epoch 1/1... Discriminator Loss: 1.0471... Generator Loss: 0.6679
Epoch 1/1... Discriminator Loss: 1.3546... Generator Loss: 0.5993
Epoch 1/1... Discriminator Loss: 1.5707... Generator Loss: 0.3221
Epoch 1/1... Discriminator Loss: 1.1570... Generator Loss: 1.0652
Epoch 1/1... Discriminator Loss: 1.0268... Generator Loss: 1.1908
Epoch 1/1... Discriminator Loss: 1.2877... Generator Loss: 0.8765
Epoch 1/1... Discriminator Loss: 1.2695... Generator Loss: 0.5798
Epoch 1/1... Discriminator Loss: 1.1932... Generator Loss: 0.5621
Epoch 1/1... Discriminator Loss: 1.5891... Generator Loss: 0.4608
Epoch 1/1... Discriminator Loss: 1.2539... Generator Loss: 0.7011
Epoch 1/1... Discriminator Loss: 1.4908... Generator Loss: 0.7579
Epoch 1/1... Discriminator Loss: 1.0617... Generator Loss: 0.6705
Epoch 1/1... Discriminator Loss: 1.3991... Generator Loss: 0.5554
Epoch 1/1... Discriminator Loss: 1.1341... Generator Loss: 2.2494
Epoch 1/1... Discriminator Loss: 1.2808... Generator Loss: 0.6736
Epoch 1/1... Discriminator Loss: 1.6805... Generator Loss: 0.6149
Epoch 1/1... Discriminator Loss: 1.2679... Generator Loss: 0.5990
Epoch 1/1... Discriminator Loss: 1.1254... Generator Loss: 0.8037
Epoch 1/1... Discriminator Loss: 1.0532... Generator Loss: 1.0536
Epoch 1/1... Discriminator Loss: 1.5481... Generator Loss: 0.3896
Epoch 1/1... Discriminator Loss: 1.2197... Generator Loss: 1.3457
Epoch 1/1... Discriminator Loss: 1.4823... Generator Loss: 1.7653
Epoch 1/1... Discriminator Loss: 1.2986... Generator Loss: 1.0686
Epoch 1/1... Discriminator Loss: 1.0448... Generator Loss: 0.7519
Epoch 1/1... Discriminator Loss: 1.1536... Generator Loss: 0.6072
Epoch 1/1... Discriminator Loss: 1.4617... Generator Loss: 0.3698
Epoch 1/1... Discriminator Loss: 1.3296... Generator Loss: 0.9407
Epoch 1/1... Discriminator Loss: 1.2495... Generator Loss: 0.7957
Epoch 1/1... Discriminator Loss: 1.1806... Generator Loss: 0.9127
Epoch 1/1... Discriminator Loss: 1.4058... Generator Loss: 0.3446
Epoch 1/1... Discriminator Loss: 1.2706... Generator Loss: 1.3359
Epoch 1/1... Discriminator Loss: 2.5025... Generator Loss: 2.3424
Epoch 1/1... Discriminator Loss: 1.3130... Generator Loss: 0.6291
Epoch 1/1... Discriminator Loss: 1.3551... Generator Loss: 0.7243
Epoch 1/1... Discriminator Loss: 1.4510... Generator Loss: 0.7290
Epoch 1/1... Discriminator Loss: 0.9109... Generator Loss: 1.3155
Epoch 1/1... Discriminator Loss: 1.1928... Generator Loss: 0.7080
Epoch 1/1... Discriminator Loss: 1.5259... Generator Loss: 1.1176
Epoch 1/1... Discriminator Loss: 1.3742... Generator Loss: 0.7371
Epoch 1/1... Discriminator Loss: 1.6048... Generator Loss: 1.2982
Epoch 1/1... Discriminator Loss: 0.9107... Generator Loss: 0.8346
Epoch 1/1... Discriminator Loss: 1.4971... Generator Loss: 0.5258
Epoch 1/1... Discriminator Loss: 1.4700... Generator Loss: 0.5542
Epoch 1/1... Discriminator Loss: 1.3272... Generator Loss: 0.6262
Epoch 1/1... Discriminator Loss: 1.3058... Generator Loss: 0.5329
Epoch 1/1... Discriminator Loss: 0.8171... Generator Loss: 2.0551
Epoch 1/1... Discriminator Loss: 1.5597... Generator Loss: 1.2442
Epoch 1/1... Discriminator Loss: 1.5261... Generator Loss: 0.5072
Epoch 1/1... Discriminator Loss: 1.1483... Generator Loss: 0.6846
Epoch 1/1... Discriminator Loss: 1.2925... Generator Loss: 1.0000
Epoch 1/1... Discriminator Loss: 1.2486... Generator Loss: 0.5217
Epoch 1/1... Discriminator Loss: 1.4844... Generator Loss: 1.1926
Epoch 1/1... Discriminator Loss: 0.9619... Generator Loss: 0.8660
Epoch 1/1... Discriminator Loss: 1.2899... Generator Loss: 1.4681
Epoch 1/1... Discriminator Loss: 1.2627... Generator Loss: 0.7066
Epoch 1/1... Discriminator Loss: 1.3275... Generator Loss: 0.8335
Epoch 1/1... Discriminator Loss: 1.2314... Generator Loss: 0.5251
Epoch 1/1... Discriminator Loss: 1.8617... Generator Loss: 0.2095
Epoch 1/1... Discriminator Loss: 1.2540... Generator Loss: 0.7105
Epoch 1/1... Discriminator Loss: 1.4380... Generator Loss: 0.5571
Epoch 1/1... Discriminator Loss: 1.2680... Generator Loss: 0.9562
Epoch 1/1... Discriminator Loss: 1.4152... Generator Loss: 0.5470
Epoch 1/1... Discriminator Loss: 1.4037... Generator Loss: 1.3103
Epoch 1/1... Discriminator Loss: 1.4752... Generator Loss: 0.4110
Epoch 1/1... Discriminator Loss: 1.2398... Generator Loss: 0.7449
Epoch 1/1... Discriminator Loss: 1.4141... Generator Loss: 0.6149
Epoch 1/1... Discriminator Loss: 1.3926... Generator Loss: 0.5630
Epoch 1/1... Discriminator Loss: 0.7581... Generator Loss: 1.1308
Epoch 1/1... Discriminator Loss: 1.2093... Generator Loss: 1.3707
Epoch 1/1... Discriminator Loss: 1.5097... Generator Loss: 0.8141
Epoch 1/1... Discriminator Loss: 1.5733... Generator Loss: 0.3850
Epoch 1/1... Discriminator Loss: 1.3221... Generator Loss: 0.6381
Epoch 1/1... Discriminator Loss: 1.3416... Generator Loss: 1.0396
Epoch 1/1... Discriminator Loss: 1.2739... Generator Loss: 0.5401
Epoch 1/1... Discriminator Loss: 1.4995... Generator Loss: 0.4339
Epoch 1/1... Discriminator Loss: 1.3353... Generator Loss: 0.6196
Epoch 1/1... Discriminator Loss: 1.3409... Generator Loss: 0.5466
Epoch 1/1... Discriminator Loss: 1.1185... Generator Loss: 0.7713
Epoch 1/1... Discriminator Loss: 1.2596... Generator Loss: 0.5835
Epoch 1/1... Discriminator Loss: 1.3596... Generator Loss: 0.7341
Epoch 1/1... Discriminator Loss: 1.3564... Generator Loss: 0.5038
Epoch 1/1... Discriminator Loss: 1.2501... Generator Loss: 0.7546
Epoch 1/1... Discriminator Loss: 1.2322... Generator Loss: 0.5839
Epoch 1/1... Discriminator Loss: 1.4135... Generator Loss: 1.0097
Epoch 1/1... Discriminator Loss: 1.3496... Generator Loss: 0.5490
Epoch 1/1... Discriminator Loss: 2.1253... Generator Loss: 0.1642
Epoch 1/1... Discriminator Loss: 1.6590... Generator Loss: 0.2945
Epoch 1/1... Discriminator Loss: 1.0829... Generator Loss: 0.7370
Epoch 1/1... Discriminator Loss: 1.2273... Generator Loss: 0.6166
Epoch 1/1... Discriminator Loss: 1.4193... Generator Loss: 0.6770
Epoch 1/1... Discriminator Loss: 1.1690... Generator Loss: 1.0198
Epoch 1/1... Discriminator Loss: 1.2384... Generator Loss: 0.7818
Epoch 1/1... Discriminator Loss: 1.1168... Generator Loss: 0.7593
Epoch 1/1... Discriminator Loss: 1.3625... Generator Loss: 0.9160
Epoch 1/1... Discriminator Loss: 1.3062... Generator Loss: 1.0195
Epoch 1/1... Discriminator Loss: 1.3645... Generator Loss: 0.6299
Epoch 1/1... Discriminator Loss: 1.3728... Generator Loss: 0.7413
Epoch 1/1... Discriminator Loss: 1.6333... Generator Loss: 0.4212
Epoch 1/1... Discriminator Loss: 1.3168... Generator Loss: 0.5728
Epoch 1/1... Discriminator Loss: 0.8372... Generator Loss: 1.0057
Epoch 1/1... Discriminator Loss: 1.2561... Generator Loss: 0.8988
Epoch 1/1... Discriminator Loss: 1.3846... Generator Loss: 0.4389
Epoch 1/1... Discriminator Loss: 1.3578... Generator Loss: 0.8186
Epoch 1/1... Discriminator Loss: 1.2193... Generator Loss: 0.7887
Epoch 1/1... Discriminator Loss: 1.4364... Generator Loss: 0.5462
Epoch 1/1... Discriminator Loss: 1.2438... Generator Loss: 0.6417
Epoch 1/1... Discriminator Loss: 1.1722... Generator Loss: 1.5268
Epoch 1/1... Discriminator Loss: 1.3234... Generator Loss: 0.7715
Epoch 1/1... Discriminator Loss: 1.0786... Generator Loss: 0.8854
Epoch 1/1... Discriminator Loss: 1.2131... Generator Loss: 1.7102
Epoch 1/1... Discriminator Loss: 1.4031... Generator Loss: 0.5975
Epoch 1/1... Discriminator Loss: 1.2957... Generator Loss: 0.8163
Epoch 1/1... Discriminator Loss: 1.2098... Generator Loss: 0.5800
Epoch 1/1... Discriminator Loss: 1.4512... Generator Loss: 0.6976
Epoch 1/1... Discriminator Loss: 1.1491... Generator Loss: 0.7221
Epoch 1/1... Discriminator Loss: 1.1976... Generator Loss: 1.0013
Epoch 1/1... Discriminator Loss: 1.3484... Generator Loss: 0.6175
Epoch 1/1... Discriminator Loss: 1.2197... Generator Loss: 0.7905
Epoch 1/1... Discriminator Loss: 1.2148... Generator Loss: 0.6050
Epoch 1/1... Discriminator Loss: 1.1043... Generator Loss: 0.9020
Epoch 1/1... Discriminator Loss: 1.6070... Generator Loss: 0.3705
Epoch 1/1... Discriminator Loss: 1.3308... Generator Loss: 1.0902
Epoch 1/1... Discriminator Loss: 1.4430... Generator Loss: 1.7212
Epoch 1/1... Discriminator Loss: 1.7190... Generator Loss: 0.2439
Epoch 1/1... Discriminator Loss: 1.4742... Generator Loss: 0.5902
Epoch 1/1... Discriminator Loss: 1.3243... Generator Loss: 0.6370
Epoch 1/1... Discriminator Loss: 1.4622... Generator Loss: 0.4302
Epoch 1/1... Discriminator Loss: 1.4227... Generator Loss: 0.5108
Epoch 1/1... Discriminator Loss: 0.9735... Generator Loss: 1.0727
Epoch 1/1... Discriminator Loss: 1.3029... Generator Loss: 0.5205
Epoch 1/1... Discriminator Loss: 1.2822... Generator Loss: 0.6713
Epoch 1/1... Discriminator Loss: 1.1638... Generator Loss: 0.7811
Epoch 1/1... Discriminator Loss: 1.4359... Generator Loss: 0.5093
Epoch 1/1... Discriminator Loss: 1.2319... Generator Loss: 0.5839
Epoch 1/1... Discriminator Loss: 1.3866... Generator Loss: 0.6893
Epoch 1/1... Discriminator Loss: 1.0201... Generator Loss: 0.7237
Epoch 1/1... Discriminator Loss: 1.0936... Generator Loss: 0.7145
Epoch 1/1... Discriminator Loss: 1.0934... Generator Loss: 1.0281
Epoch 1/1... Discriminator Loss: 1.7739... Generator Loss: 0.8991
Epoch 1/1... Discriminator Loss: 1.0771... Generator Loss: 0.8408
Epoch 1/1... Discriminator Loss: 1.2056... Generator Loss: 0.7075
Epoch 1/1... Discriminator Loss: 1.7257... Generator Loss: 1.0963
Epoch 1/1... Discriminator Loss: 1.3866... Generator Loss: 0.5282
Epoch 1/1... Discriminator Loss: 0.8408... Generator Loss: 1.3993
Epoch 1/1... Discriminator Loss: 1.3092... Generator Loss: 0.4888
Epoch 1/1... Discriminator Loss: 1.4211... Generator Loss: 0.4567
Epoch 1/1... Discriminator Loss: 1.2013... Generator Loss: 0.6219
Epoch 1/1... Discriminator Loss: 1.9651... Generator Loss: 0.1859
Epoch 1/1... Discriminator Loss: 1.2551... Generator Loss: 0.6415
Epoch 1/1... Discriminator Loss: 1.2882... Generator Loss: 0.7649
Epoch 1/1... Discriminator Loss: 1.2713... Generator Loss: 0.9218
Epoch 1/1... Discriminator Loss: 1.2674... Generator Loss: 1.0138
Epoch 1/1... Discriminator Loss: 1.1817... Generator Loss: 0.6446
Epoch 1/1... Discriminator Loss: 1.3298... Generator Loss: 0.4935
Epoch 1/1... Discriminator Loss: 1.7575... Generator Loss: 0.2650
Epoch 1/1... Discriminator Loss: 1.1861... Generator Loss: 1.2975
Epoch 1/1... Discriminator Loss: 1.5668... Generator Loss: 0.3705
Epoch 1/1... Discriminator Loss: 1.1128... Generator Loss: 0.7234
Epoch 1/1... Discriminator Loss: 1.0915... Generator Loss: 1.2205
Epoch 1/1... Discriminator Loss: 1.1718... Generator Loss: 0.8789
Epoch 1/1... Discriminator Loss: 1.1197... Generator Loss: 0.6829
Epoch 1/1... Discriminator Loss: 1.3972... Generator Loss: 0.4357
Epoch 1/1... Discriminator Loss: 1.4030... Generator Loss: 0.7365
Epoch 1/1... Discriminator Loss: 1.8387... Generator Loss: 0.2135
Epoch 1/1... Discriminator Loss: 1.2916... Generator Loss: 0.9715
Epoch 1/1... Discriminator Loss: 0.7062... Generator Loss: 1.5185
Epoch 1/1... Discriminator Loss: 1.0223... Generator Loss: 0.7272
Epoch 1/1... Discriminator Loss: 1.4574... Generator Loss: 1.3929
Epoch 1/1... Discriminator Loss: 1.6409... Generator Loss: 0.3002
Epoch 1/1... Discriminator Loss: 1.1836... Generator Loss: 0.4995
Epoch 1/1... Discriminator Loss: 1.0214... Generator Loss: 0.7670
Epoch 1/1... Discriminator Loss: 1.1479... Generator Loss: 0.6594
Epoch 1/1... Discriminator Loss: 1.2938... Generator Loss: 0.5959
Epoch 1/1... Discriminator Loss: 1.8137... Generator Loss: 2.1369
Epoch 1/1... Discriminator Loss: 1.2840... Generator Loss: 0.6036
Epoch 1/1... Discriminator Loss: 1.1826... Generator Loss: 1.0715
Epoch 1/1... Discriminator Loss: 1.3339... Generator Loss: 1.2625
Epoch 1/1... Discriminator Loss: 1.3405... Generator Loss: 0.9271
Epoch 1/1... Discriminator Loss: 1.3368... Generator Loss: 0.7277
Epoch 1/1... Discriminator Loss: 1.3579... Generator Loss: 0.5703
Epoch 1/1... Discriminator Loss: 0.9690... Generator Loss: 1.1075
Epoch 1/1... Discriminator Loss: 1.2166... Generator Loss: 0.5861
Epoch 1/1... Discriminator Loss: 1.2625... Generator Loss: 0.7237
Epoch 1/1... Discriminator Loss: 1.2960... Generator Loss: 0.8135
Epoch 1/1... Discriminator Loss: 1.0851... Generator Loss: 0.5919
Epoch 1/1... Discriminator Loss: 1.4246... Generator Loss: 0.8552
Epoch 1/1... Discriminator Loss: 1.4860... Generator Loss: 0.4436
Epoch 1/1... Discriminator Loss: 1.5848... Generator Loss: 0.3078
Epoch 1/1... Discriminator Loss: 1.5722... Generator Loss: 0.3503
Epoch 1/1... Discriminator Loss: 1.3589... Generator Loss: 0.6275
Epoch 1/1... Discriminator Loss: 1.2686... Generator Loss: 0.7957
Epoch 1/1... Discriminator Loss: 1.2651... Generator Loss: 0.4935
Epoch 1/1... Discriminator Loss: 1.0674... Generator Loss: 1.1781
Epoch 1/1... Discriminator Loss: 1.0289... Generator Loss: 0.7770
Epoch 1/1... Discriminator Loss: 1.1938... Generator Loss: 0.8725
Epoch 1/1... Discriminator Loss: 1.3650... Generator Loss: 0.5344
Epoch 1/1... Discriminator Loss: 1.4313... Generator Loss: 0.5559
Epoch 1/1... Discriminator Loss: 1.1990... Generator Loss: 0.6673
Epoch 1/1... Discriminator Loss: 1.1675... Generator Loss: 0.9230
Epoch 1/1... Discriminator Loss: 1.3611... Generator Loss: 0.4349
Epoch 1/1... Discriminator Loss: 1.8281... Generator Loss: 0.3434
Epoch 1/1... Discriminator Loss: 1.3172... Generator Loss: 0.5041
Epoch 1/1... Discriminator Loss: 1.0860... Generator Loss: 1.4449

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.