Deep Convolutional GANs

In this notebook, you'll build a GAN using convolutional layers in the generator and discriminator. This is called a Deep Convolutional GAN, or DCGAN for short. The DCGAN architecture was first explored last year and has seen impressive results in generating new images, you can read the original paper here.

You'll be training DCGAN on the Street View House Numbers (SVHN) dataset. These are color images of house numbers collected from Google street view. SVHN images are in color and much more variable than MNIST.

So, we'll need a deeper and more powerful network. This is accomplished through using convolutional layers in the discriminator and generator. It's also necessary to use batch normalization to get the convolutional networks to train. The only real changes compared to what you saw previously are in the generator and discriminator, otherwise the rest of the implementation is the same.


In [1]:
%matplotlib inline

import pickle as pkl

import matplotlib.pyplot as plt
import numpy as np
from scipy.io import loadmat
import tensorflow as tf

In [2]:
!mkdir data


Ein Unterverzeichnis oder eine Datei mit dem Namen "data" existiert bereits.

Getting the data

Here you can download the SVHN dataset. Run the cell above and it'll download to your machine.


In [3]:
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm

data_dir = 'data/'

if not isdir(data_dir):
    raise Exception("Data directory doesn't exist!")

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(data_dir + "train_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/train_32x32.mat',
            data_dir + 'train_32x32.mat',
            pbar.hook)

if not isfile(data_dir + "test_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/test_32x32.mat',
            data_dir + 'test_32x32.mat',
            pbar.hook)

These SVHN files are .mat files typically used with Matlab. However, we can load them in with scipy.io.loadmat which we imported above.


In [4]:
trainset = loadmat(data_dir + 'train_32x32.mat')
testset = loadmat(data_dir + 'test_32x32.mat')

Here I'm showing a small sample of the images. Each of these is 32x32 with 3 color channels (RGB). These are the real images we'll pass to the discriminator and what the generator will eventually fake.


In [5]:
idx = np.random.randint(0, trainset['X'].shape[3], size=36)
fig, axes = plt.subplots(6, 6, sharex=True, sharey=True, figsize=(5,5),)
for ii, ax in zip(idx, axes.flatten()):
    ax.imshow(trainset['X'][:,:,:,ii], aspect='equal')
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
plt.subplots_adjust(wspace=0, hspace=0)


Here we need to do a bit of preprocessing and getting the images into a form where we can pass batches to the network. First off, we need to rescale the images to a range of -1 to 1, since the output of our generator is also in that range. We also have a set of test and validation images which could be used if we're trying to identify the numbers in the images.


In [6]:
def scale(x, feature_range=(-1, 1)):
    # scale to (0, 1)
    x = ((x - x.min())/(255 - x.min()))
    
    # scale to feature_range
    min, max = feature_range
    x = x * (max - min) + min
    return x

In [7]:
class Dataset:
    def __init__(self, train, test, val_frac=0.5, shuffle=False, scale_func=None):
        split_idx = int(len(test['y'])*(1 - val_frac))
        self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
        self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
        self.train_x, self.train_y = train['X'], train['y']
        
        self.train_x = np.rollaxis(self.train_x, 3)
        self.valid_x = np.rollaxis(self.valid_x, 3)
        self.test_x = np.rollaxis(self.test_x, 3)
        
        if scale_func is None:
            self.scaler = scale
        else:
            self.scaler = scale_func
        self.shuffle = shuffle
        
    def batches(self, batch_size):
        if self.shuffle:
            idx = np.arange(len(dataset.train_x))
            np.random.shuffle(idx)
            self.train_x = self.train_x[idx]
            self.train_y = self.train_y[idx]
        
        n_batches = len(self.train_y)//batch_size
        for ii in range(0, len(self.train_y), batch_size):
            x = self.train_x[ii:ii+batch_size]
            y = self.train_y[ii:ii+batch_size]
            
            yield self.scaler(x), self.scaler(y)

Network Inputs

Here, just creating some placeholders like normal.


In [8]:
def model_inputs(real_dim, z_dim):
    inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    
    return inputs_real, inputs_z

Generator

Here you'll build the generator network. The input will be our noise vector z as before. Also as before, the output will be a $tanh$ output, but this time with size 32x32 which is the size of our SVHN images.

What's new here is we'll use convolutional layers to create our new images. The first layer is a fully connected layer which is reshaped into a deep and narrow layer, something like 4x4x1024 as in the original DCGAN paper. Then we use batch normalization and a leaky ReLU activation. Next is a transposed convolution where typically you'd halve the depth and double the width and height of the previous layer. Again, we use batch normalization and leaky ReLU. For each of these layers, the general scheme is convolution > batch norm > leaky ReLU.

You keep stacking layers up like this until you get the final transposed convolution layer with shape 32x32x3. Below is the archicture used in the original DCGAN paper:

Note that the final layer here is 64x64x3, while for our SVHN dataset, we only want it to be 32x32x3.

Exercise: Build the transposed convolutional network for the generator in the function below. Be sure to use leaky ReLUs on all the layers except for the last tanh layer, as well as batch normalization on all the transposed convolutional layers except the last one.


In [9]:
def generator(z, output_dim, reuse=False, alpha=0.2, training=True):
    with tf.variable_scope('generator', reuse=reuse):
        # First fully connected layer
        x1 = tf.layers.dense(z, 4*4*512) # shortcut like before, dim half of picture due to missing layer
        x1 = tf.reshape(x1, (-1, 4, 4, 512)) # reshape for conv stack
        x1 = tf.layers.batch_normalization(x1, training=training) # from layers package, flag handed through
        x1 = tf.maximum(x1, x1*alpha)
        # dimension = 4x4x512
        
        x2 = tf.layers.conv2d_transpose(x1, filters=256, kernel_size=5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=training)
        x2 = tf.maximum(x2, x2 * alpha)
        # dim = 8x8x256
        
        x3 = tf.layers.conv2d_transpose(x2, filters=128, kernel_size=5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=training)
        x3 = tf.maximum(x3, x3 * alpha)
        #dim = 16x16*128
        
        # Output layer, 32x32x3
        logits = tf.layers.conv2d_transpose(x3, filters=output_dim, kernel_size=5, strides=2, padding='same')
        #dim should be 32x32x'output_dim'
        
        out = tf.tanh(logits)
        
        return out

Discriminator

Here you'll build the discriminator. This is basically just a convolutional classifier like you've build before. The input to the discriminator are 32x32x3 tensors/images. You'll want a few convolutional layers, then a fully connected layer for the output. As before, we want a sigmoid output, and you'll need to return the logits as well. For the depths of the convolutional layers I suggest starting with 16, 32, 64 filters in the first layer, then double the depth as you add layers. Note that in the DCGAN paper, they did all the downsampling using only strided convolutional layers with no maxpool layers.

You'll also want to use batch normalization with tf.layers.batch_normalization on each layer except the first convolutional and output layers. Again, each layer should look something like convolution > batch norm > leaky ReLU.

Note: in this project, your batch normalization layers will always use batch statistics. (That is, always set training to True.) That's because we are only interested in using the discriminator to help train the generator. However, if you wanted to use the discriminator for inference later, then you would need to set the training parameter appropriately.

Exercise: Build the convolutional network for the discriminator. The input is a 32x32x3 images, the output is a sigmoid plus the logits. Again, use Leaky ReLU activations and batch normalization on all the layers except the first.


In [10]:
def discriminator(x, reuse=False, alpha=0.2):
    with tf.variable_scope('discriminator', reuse=reuse):
        # Input layer is 32x32x3
        x1 = tf.layers.conv2d(x, filters=32, kernel_size=5, strides=2, padding='same')
        x1 = tf.maximum(x1, x1 * alpha)
        # no batch normalization in first one!
        # dim = 16x16x32
        
        x2 = tf.layers.conv2d(x1, filters=64, kernel_size=5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=True)
        x2 = tf.maximum(x2, x2 * alpha)
        # dim = 8x8x64
        
        x3 = tf.layers.conv2d(x2, filters=128, kernel_size=5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=True)
        x3 = tf.maximum(x3, x3 * alpha)
        # dim = 4x4x128
        
        x3_flat = tf.reshape(x3, (-1,4*4*128))
        logits = tf.layers.dense(x3, 1)
        out = tf.sigmoid(logits)
        
        return out, logits

Model Loss

Calculating the loss like before, nothing new here.


In [11]:
def model_loss(input_real, input_z, output_dim, alpha=0.2):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    g_model = generator(input_z, output_dim, alpha=alpha)
    d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss

Optimizers

Not much new here, but notice how the train operations are wrapped in a with tf.control_dependencies block so the batch normalization layers can update their population statistics.


In [12]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt

Building the model

Here we can use the functions we defined about to build the model as a class. This will make it easier to move the network around in our code since the nodes and operations in the graph are packaged in one object.


In [13]:
class GAN:
    def __init__(self, real_size, z_size, learning_rate, alpha=0.2, beta1=0.5):
        tf.reset_default_graph()
        
        self.input_real, self.input_z = model_inputs(real_size, z_size)
        
        self.d_loss, self.g_loss = model_loss(self.input_real, self.input_z,
                                              real_size[2], alpha=0.2)
        
        self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, learning_rate, 0.5)

Here is a function for displaying generated images.


In [14]:
def view_samples(epoch, samples, nrows, ncols, figsize=(5,5)):
    fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, 
                             sharey=True, sharex=True)
    for ax, img in zip(axes.flatten(), samples[epoch]):
        ax.axis('off')
        img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
        ax.set_adjustable('box-forced')
        im = ax.imshow(img, aspect='equal')
   
    plt.subplots_adjust(wspace=0, hspace=0)
    return fig, axes

And another function we can use to train our network. Notice when we call generator to create the samples to display, we set training to False. That's so the batch normalization layers will use the population statistics rather than the batch statistics. Also notice that we set the net.input_real placeholder when we run the generator's optimizer. The generator doesn't actually use it, but we'd get an errror without it because of the tf.control_dependencies block we created in model_opt.


In [15]:
def train(net, dataset, epochs, batch_size, print_every=10, show_every=100, figsize=(5,5)):
    saver = tf.train.Saver()
    sample_z = np.random.uniform(-1, 1, size=(72, z_size))

    samples, losses = [], []
    steps = 0

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(epochs):
            for x, y in dataset.batches(batch_size):
                steps += 1

                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))

                # Run optimizers
                _ = sess.run(net.d_opt, feed_dict={net.input_real: x, net.input_z: batch_z})
                _ = sess.run(net.g_opt, feed_dict={net.input_z: batch_z, net.input_real: x})

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval({net.input_z: batch_z, net.input_real: x})
                    train_loss_g = net.g_loss.eval({net.input_z: batch_z})

                    print("Epoch {}/{}...".format(e+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % show_every == 0:
                    gen_samples = sess.run(
                                   generator(net.input_z, 3, reuse=True, training=False),
                                   feed_dict={net.input_z: sample_z})
                    samples.append(gen_samples)
                    _ = view_samples(-1, samples, 6, 12, figsize=figsize)
                    plt.show()

        saver.save(sess, './checkpoints/generator.ckpt')

    with open('samples.pkl', 'wb') as f:
        pkl.dump(samples, f)
    
    return losses, samples

Hyperparameters

GANs are very senstive to hyperparameters. A lot of experimentation goes into finding the best hyperparameters such that the generator and discriminator don't overpower each other. Try out your own hyperparameters or read the DCGAN paper to see what worked for them.

Exercise: Find hyperparameters to train this GAN. The values found in the DCGAN paper work well, or you can experiment on your own. In general, you want the discriminator loss to be around 0.3, this means it is correctly classifying images as fake or real about 50% of the time.


In [24]:
real_size = (32,32,3)
z_size = 100
learning_rate = 0.0002
batch_size = 128
epochs = 25
alpha = 0.2
beta1 = 0.5

# Create the network
net = GAN(real_size, z_size, learning_rate, alpha=alpha, beta1=beta1)

In [25]:
# Load the data and train the network here
dataset = Dataset(trainset, testset)
losses, samples = train(net, dataset, epochs, batch_size, figsize=(10,5))


Epoch 1/1... Discriminator Loss: 1.4915... Generator Loss: 0.6430
Epoch 1/1... Discriminator Loss: 1.3444... Generator Loss: 0.6576
Epoch 1/1... Discriminator Loss: 1.2604... Generator Loss: 0.6791
Epoch 1/1... Discriminator Loss: 1.2291... Generator Loss: 0.7124
Epoch 1/1... Discriminator Loss: 1.2144... Generator Loss: 0.7939
Epoch 1/1... Discriminator Loss: 1.0995... Generator Loss: 0.8082
Epoch 1/1... Discriminator Loss: 1.1365... Generator Loss: 0.8172
Epoch 1/1... Discriminator Loss: 1.1338... Generator Loss: 0.8649
Epoch 1/1... Discriminator Loss: 1.0148... Generator Loss: 0.9042
Epoch 1/1... Discriminator Loss: 1.0455... Generator Loss: 0.8989
Epoch 1/1... Discriminator Loss: 1.0460... Generator Loss: 0.8960
Epoch 1/1... Discriminator Loss: 1.1064... Generator Loss: 0.8098
Epoch 1/1... Discriminator Loss: 1.2150... Generator Loss: 0.7426
Epoch 1/1... Discriminator Loss: 1.3650... Generator Loss: 0.6931
Epoch 1/1... Discriminator Loss: 1.4305... Generator Loss: 0.7022
Epoch 1/1... Discriminator Loss: 1.3704... Generator Loss: 0.7270
Epoch 1/1... Discriminator Loss: 1.4305... Generator Loss: 0.7069
Epoch 1/1... Discriminator Loss: 1.4418... Generator Loss: 0.7281
Epoch 1/1... Discriminator Loss: 1.4427... Generator Loss: 0.6984
Epoch 1/1... Discriminator Loss: 1.4275... Generator Loss: 0.6945
Epoch 1/1... Discriminator Loss: 1.4133... Generator Loss: 0.7018
Epoch 1/1... Discriminator Loss: 1.4091... Generator Loss: 0.7097
Epoch 1/1... Discriminator Loss: 1.3945... Generator Loss: 0.7213
Epoch 1/1... Discriminator Loss: 1.3548... Generator Loss: 0.7293
Epoch 1/1... Discriminator Loss: 1.3985... Generator Loss: 0.6922
Epoch 1/1... Discriminator Loss: 1.3981... Generator Loss: 0.7406
Epoch 1/1... Discriminator Loss: 1.3857... Generator Loss: 0.6958
Epoch 1/1... Discriminator Loss: 1.3576... Generator Loss: 0.7173
Epoch 1/1... Discriminator Loss: 1.3754... Generator Loss: 0.7328
Epoch 1/1... Discriminator Loss: 1.3840... Generator Loss: 0.6983
Epoch 1/1... Discriminator Loss: 1.3110... Generator Loss: 0.7677
Epoch 1/1... Discriminator Loss: 1.3707... Generator Loss: 0.7149
Epoch 1/1... Discriminator Loss: 1.3077... Generator Loss: 0.7429
Epoch 1/1... Discriminator Loss: 1.3610... Generator Loss: 0.7226
Epoch 1/1... Discriminator Loss: 1.3124... Generator Loss: 0.7497
Epoch 1/1... Discriminator Loss: 1.3107... Generator Loss: 0.7218
Epoch 1/1... Discriminator Loss: 1.3147... Generator Loss: 0.7810
Epoch 1/1... Discriminator Loss: 1.3295... Generator Loss: 0.7551
Epoch 1/1... Discriminator Loss: 1.3168... Generator Loss: 0.7337
Epoch 1/1... Discriminator Loss: 1.3157... Generator Loss: 0.7697
Epoch 1/1... Discriminator Loss: 1.2425... Generator Loss: 0.8179
Epoch 1/1... Discriminator Loss: 1.2765... Generator Loss: 0.7592
Epoch 1/1... Discriminator Loss: 1.3439... Generator Loss: 0.7344
Epoch 1/1... Discriminator Loss: 1.2941... Generator Loss: 0.8175
Epoch 1/1... Discriminator Loss: 1.2815... Generator Loss: 0.7289
Epoch 1/1... Discriminator Loss: 1.3540... Generator Loss: 0.6992
Epoch 1/1... Discriminator Loss: 1.3365... Generator Loss: 0.7260
Epoch 1/1... Discriminator Loss: 1.3451... Generator Loss: 0.7074
Epoch 1/1... Discriminator Loss: 1.3525... Generator Loss: 0.6994
Epoch 1/1... Discriminator Loss: 1.2927... Generator Loss: 0.7396
Epoch 1/1... Discriminator Loss: 1.3369... Generator Loss: 0.6973
Epoch 1/1... Discriminator Loss: 1.2381... Generator Loss: 0.7792
Epoch 1/1... Discriminator Loss: 1.1520... Generator Loss: 0.9216
Epoch 1/1... Discriminator Loss: 1.2932... Generator Loss: 0.7812
Epoch 1/1... Discriminator Loss: 1.3091... Generator Loss: 0.7282
Epoch 1/1... Discriminator Loss: 1.3791... Generator Loss: 0.6900
Epoch 1/1... Discriminator Loss: 1.2616... Generator Loss: 0.7688

In [26]:
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator', alpha=0.5)
plt.plot(losses.T[1], label='Generator', alpha=0.5)
plt.title("Training Losses")
plt.legend()


Out[26]:
<matplotlib.legend.Legend at 0x1d70daca320>

In [27]:
_ = view_samples(-1, samples, 6, 12, figsize=(10,5))



In [ ]: