In [2]:
# imports libraries
import os
import sys
import glob
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
import math
import sklearn.decomposition as dcmp
import pyaudio
import csv
import IPython

%matplotlib inline 

# Grabs the preprocessing and automatic_sync files
sys.path.append(os.path.join(os.pardir,'pythonCode'))
import preprocessing as pp
import automatic_sync as autoS

In [4]:
# now reads in the datafile from the raw data folder
rawDataPath = os.path.join(os.pardir,'rawData')
files = glob.glob(os.path.join(rawDataPath, 'IP*.wav'))
names = []
        
for name in files:
    fileName = os.path.basename(name).split(".")[0]
    names.append(fileName)

# Reads the .wav files from the list generted by getKeys
(names,rawDataset) = pp.readWAV(rawDataPath,names);


Opening IP_CP_UW_A1 ...
Opening IP_CP_UW_A2 ...

In [5]:
print(rawDataset[names[0]].shape)
Fs = 44100


(6388736,)

In [7]:
this_range = range(6100000,6300000)
plt.figure(figsize=(12,4))
plt.subplot(2,1,1)
plt.specgram(rawDataset[names[0]][this_range], NFFT=1024, Fs=Fs, noverlap=512, cmap=plt.cm.gist_heat)
plt.xlabel('Time [sec]')
plt.ylabel('Freq [Hz]')

plt.subplot(2,1,2)
N = len(rawDataset[names[0]][this_range])
time = (1/Fs)*np.linspace(1,N,N)
plt.plot(time,rawDataset[names[0]][this_range])
plt.xlim(0,5)
plt.xlabel('Time [sec]')
plt.ylabel('Amplitude')


Out[7]:
<matplotlib.text.Text at 0x490026d828>

In [6]:
this_range = range(7500000,7800000)

fig = plt.figure(figsize=(12,4))

plt.subplot(2,1,1)
plt.specgram(rawDataset[names[1]][this_range], NFFT=1024, Fs=Fs, noverlap=512, cmap=plt.cm.gist_heat)
plt.xlabel('Time [sec]')
plt.ylabel('Freq [Hz]')

plt.subplot(2,1,2)
N = len(rawDataset[names[1]][this_range])
time = (1/Fs)*np.linspace(1,N,N)
plt.plot(time,rawDataset[names[1]][this_range])
plt.xlim(0,7)
plt.xlabel('Time [sec]')
plt.ylabel('Amplitude')


Out[6]:
<matplotlib.text.Text at 0x49001478d0>

In [20]:
names[1]


Out[20]:
'STCP_2'