In [1]:
import matplotlib.pyplot as plt
import numpy as np
# Generate Data
data = np.random.rand(10,6)
rows = list('ZYXWVUTSRQ')
columns = list('ABCDEF')
In [2]:
%matplotlib inline
In [3]:
plt.rc('figure', figsize=(8, 6))
In [4]:
plt.pcolor(data)
plt.xticks(np.arange(0,6)+0.5,columns)
plt.yticks(np.arange(0,10)+0.5,rows)
plt.show()
plt.close()
In [5]:
plt.pcolor(data,cmap=plt.cm.Reds,edgecolors='k')
plt.xticks(np.arange(0,6)+0.5,columns)
plt.yticks(np.arange(0,10)+0.5,rows)
plt.show()
plt.close()
In [6]:
f_data = open('ts_data.txt', 'r').readlines()
In [7]:
import datetime
data_dt = [datetime.datetime.fromtimestamp(float(f_data[i])) for i in range(1, len(f_data))]
In [8]:
import pandas as pd
pd.set_option('display.notebook_repr_html', False)
pd.set_option('display.max_columns', 20)
pd.set_option('display.max_rows', 25)
In [9]:
df = pd.Series(data_dt, index=data_dt)
In [10]:
df
Out[10]:
In [11]:
a = df.groupby([df.index.day, df.index.hour]).count()
a
Out[11]:
In [12]:
df.groupby([df.index.hour]).count().plot()
Out[12]:
In [13]:
x_data = pd.DataFrame(a)
x_data.reset_index(inplace=True)
x_data.columns= ['Day', 'Hour', 'Count']
In [14]:
p_data = x_data.pivot(index='Hour', columns='Day', values='Count')
n_data = pd.DataFrame(p_data, columns=range(11, 21), index=range(0,23))
In [15]:
p_data
Out[15]:
In [16]:
plt.pcolor(n_data, cmap=plt.cm.Reds,edgecolors='k')
plt.yticks(np.arange(0.5, len(n_data.index), 1), n_data.index)
plt.xticks(np.arange(0.5, len(n_data.columns), 1), n_data.columns)
plt.show()