In [3]:
cd ..
In [4]:
import NotebookImport
from Parallel.Age_HIV_Features import *
In [5]:
filtered = df_hiv.index.diff(probe_idx)
In [6]:
len(filtered)
Out[6]:
In [7]:
filtered.tofile(FIGDIR + 'filtered_probes.csv', sep='\n')
In [9]:
age_hannum = bhCorrection(p_vals.in_set_s1.ix[probe_idx]) < .01
In [10]:
f = {'Age (Hannum)': age_hannum,
'Age (validated)': g_age_2,
'HIV': g_hiv,
'Age only': features['Age (BH)'],
'HIV + Age': features['HIV + Age (BH)'],
'HIV only': features['HIV (BH)']}
marker_summary = pd.concat(f, axis=1).astype(int)
In [11]:
marker_summary.sum().order()
Out[11]:
In [12]:
marker_summary[['Age (Hannum)','Age (validated)','Age only', 'HIV',
'HIV only','HIV + Age']].to_csv(FIGDIR + 'marker_summary.csv')
In [13]:
p = res['in_set_s1']['age_LR']['p']
mx_models = res['in_set_s1']['multi_variate'].join(p).ix[ti(age_hannum)]
mx_models.sort('p').to_csv(FIGDIR + 'hannum_age.csv')
In [29]:
p = res['in_set_s3']['age_LR']['p']
mx_models = res['in_set_s3']['multi_variate'].join(p).ix[ti(g_age_2)]
mx_models.sort('p').to_csv(FIGDIR + 'EPIC_age.csv')
In [15]:
p = r4['HIV_LR']['p']
hiv_models = r4['multi_variate'].join(p).ix[ti(g_hiv)]
hiv_models.sort('p').to_csv(FIGDIR + 'HIV_models.csv')