In [1]:
from __future__ import print_function
In [2]:
import numpy as np
In [4]:
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
In [5]:
batch_size = 128 # number of samples to include in each mini-batch
nb_classes = 10 # there are ten digit classes in the MNIST data set
nb_epoch = 10 # number of epochs to train for
In [6]:
img_rows, img_cols = 28, 28 # input image dimensions
nb_filters = 32 # number of convolutional filters to use
pool_size = (2, 2) # size of pooling area for max pooling
kernel_size = (3, 3) # convolution kernel size
In [8]:
(X_train, y_train), (X_test, y_test) = mnist.load_data()
In [9]:
if K.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
In [10]:
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
In [11]:
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
In [12]:
y_train
Out[12]:
In [13]:
Y_train
Out[13]:
In [14]:
model = Sequential()
In [15]:
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid', input_shape=input_shape))
model.add(Activation('relu'))
In [16]:
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
In [17]:
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
In [18]:
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
In [19]:
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
In [20]:
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test, verbose=0)
Out[20]:
In [21]:
print('Test score:', score[0])
print('Test accuracy:', score[1])