In [1]:
import numpy as np
from numpy.random import randn
import pandas as pd
from scipy import stats
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
In [2]:
data1 = randn(100)
data2 = randn(100)
In [3]:
sns.boxplot([data1,data2])
Out[3]:
In [5]:
sns.boxplot([data1,data2], whis=np.inf)
Out[5]:
In [7]:
sns.boxplot(data1, whis=np.inf)
Out[7]:
In [8]:
sns.boxplot(data2, whis=np.inf)
Out[8]:
In [11]:
sns.boxplot(data = [data1, data2], orient='v', whis=np.inf)
Out[11]:
In [12]:
data1 = stats.norm(0,5).rvs(100)
In [13]:
data2 = np.concatenate([stats.gamma(5).rvs(50) - 1,
stats.gamma(5).rvs(50) * - 1])
In [15]:
sns.boxplot(data = [data1, data2], orient='v', whis=np.inf)
Out[15]:
In [17]:
sns.violinplot(data=[data1, data2])
Out[17]:
In [18]:
sns.violinplot(data=[data1, data2], bw=.01)
Out[18]:
In [19]:
sns.violinplot(data=[data1, data2], inner='stick')
Out[19]:
In [ ]: