In [1]:
import numpy as np
import pandas as pd
from pandas import Series, DataFrame

In [3]:
arr1 = np.arange(9).reshape(3,3)

In [5]:
np.concatenate([arr1, arr1], axis=1)


Out[5]:
array([[0, 1, 2, 0, 1, 2],
       [3, 4, 5, 3, 4, 5],
       [6, 7, 8, 6, 7, 8]])

In [6]:
np.concatenate([arr1, arr1], axis=0)


Out[6]:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8],
       [0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [7]:
ser1 = Series([0,1,2], index=['T', 'U', 'V'])
ser2 = Series([3,4], index=['X', 'Y'])

In [9]:
pd.concat([ser1,ser2], axis=0)


Out[9]:
T    0
U    1
V    2
X    3
Y    4
dtype: int64

In [10]:
pd.concat([ser1,ser2], axis=1)


Out[10]:
0 1
T 0.0 NaN
U 1.0 NaN
V 2.0 NaN
X NaN 3.0
Y NaN 4.0

In [11]:
pd.concat([ser1,ser2], axis=0, keys=['cat1', 'cat2'])


Out[11]:
cat1  T    0
      U    1
      V    2
cat2  X    3
      Y    4
dtype: int64

In [14]:
dframe1 = DataFrame(np.random.randn(4,3), columns=['X', 'Y', 'Z'])

In [15]:
dframe2 = DataFrame(np.random.randn(3,3), columns=['Y', 'Q', 'X'])

In [16]:
pd.concat([dframe1, dframe2])


Out[16]:
Q X Y Z
0 NaN -0.249939 0.722401 -1.706570
1 NaN 1.818554 0.279813 0.865695
2 NaN 0.609562 -0.433680 1.386421
3 NaN -0.550459 0.520273 -1.539290
0 0.300158 -0.112388 1.183463 NaN
1 1.558093 -1.046223 1.491392 NaN
2 0.757474 0.419251 1.734149 NaN

In [17]:
pd.concat([dframe1, ser1])


Out[17]:
0 X Y Z
0 NaN -0.249939 0.722401 -1.706570
1 NaN 1.818554 0.279813 0.865695
2 NaN 0.609562 -0.433680 1.386421
3 NaN -0.550459 0.520273 -1.539290
T 0.0 NaN NaN NaN
U 1.0 NaN NaN NaN
V 2.0 NaN NaN NaN

In [ ]: