In [1]:
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
In [3]:
arr1 = np.arange(9).reshape(3,3)
In [5]:
np.concatenate([arr1, arr1], axis=1)
Out[5]:
In [6]:
np.concatenate([arr1, arr1], axis=0)
Out[6]:
In [7]:
ser1 = Series([0,1,2], index=['T', 'U', 'V'])
ser2 = Series([3,4], index=['X', 'Y'])
In [9]:
pd.concat([ser1,ser2], axis=0)
Out[9]:
In [10]:
pd.concat([ser1,ser2], axis=1)
Out[10]:
In [11]:
pd.concat([ser1,ser2], axis=0, keys=['cat1', 'cat2'])
Out[11]:
In [14]:
dframe1 = DataFrame(np.random.randn(4,3), columns=['X', 'Y', 'Z'])
In [15]:
dframe2 = DataFrame(np.random.randn(3,3), columns=['Y', 'Q', 'X'])
In [16]:
pd.concat([dframe1, dframe2])
Out[16]:
In [17]:
pd.concat([dframe1, ser1])
Out[17]:
In [ ]: