In [1]:
import numpy as np 
import pandas as pd
from pandas import Series, DataFrame

In [2]:
ser1 = Series([0,1,2], index=['A', 'B', 'C'])
ser1


Out[2]:
A    0
B    1
C    2
dtype: int64

In [3]:
ser2 = Series([3,4,5,6], index=['A', 'B', 'C', 'D'])
ser2


Out[3]:
A    3
B    4
C    5
D    6
dtype: int64

In [4]:
ser1 + ser2


Out[4]:
A    3.0
B    5.0
C    7.0
D    NaN
dtype: float64

In [7]:
dframe1 = DataFrame(np.arange(4).reshape((2,2)), columns=list('AB'), index=['NYC', 'LA'])
dframe1


Out[7]:
A B
NYC 0 1
LA 2 3

In [8]:
dframe2 = DataFrame(np.arange(9).reshape((3,3,)), columns=list('ADC'), index=['NYC', 'SF', 'LA'])
dframe2


Out[8]:
A D C
NYC 0 1 2
SF 3 4 5
LA 6 7 8

In [9]:
dframe1 + dframe2


Out[9]:
A B C D
LA 8.0 NaN NaN NaN
NYC 0.0 NaN NaN NaN
SF NaN NaN NaN NaN

In [10]:
dframe1.add(dframe2, fill_value=0)


Out[10]:
A B C D
LA 8.0 3.0 8.0 7.0
NYC 0.0 1.0 2.0 1.0
SF 3.0 NaN 5.0 4.0

In [11]:
ser3 = dframe2.ix[0]
ser3


Out[11]:
A    0
D    1
C    2
Name: NYC, dtype: int64

In [12]:
dframe2 - ser3


Out[12]:
A D C
NYC 0 0 0
SF 3 3 3
LA 6 6 6

In [ ]: