In [1]:
import numpy as np
from pandas import DataFrame,Series
import pandas as pd
from numpy.random import randn
In [3]:
ser1 = Series([1,2,3,4], index =['A', 'B', 'C', 'D'])
In [4]:
ser2 = ser1.reindex(['A', 'B', 'C', 'D', 'E', 'F'])
ser2
Out[4]:
In [5]:
ser2.reindex(['A', 'B', 'C', 'D', 'E', 'F', 'G'], fill_value=0)
Out[5]:
In [6]:
ser1
Out[6]:
In [7]:
ser2
Out[7]:
In [8]:
ser3 = Series(['USA', 'Mexico', 'Canada'], index=[0,5,10])
ser3
Out[8]:
In [9]:
ranger = range(15)
ranger
Out[9]:
In [10]:
ser3.reindex(ranger, method='ffill')
Out[10]:
In [11]:
dframe = DataFrame(randn(25).reshape((5,5)), index=['A', 'B', 'D', 'E', 'F'], columns=['col1', 'col2', 'co3', 'col4', 'col5'])
In [12]:
dframe
Out[12]:
In [13]:
dframe2 = dframe.reindex(['A', 'B', 'C', 'D', 'E', 'F'])
In [15]:
dframe2
Out[15]:
In [16]:
new_columns = ['col1', 'col2', 'col3', 'col4', 'col5', 'col6']
In [17]:
dframe2.reindex(columns=new_columns)
Out[17]:
In [18]:
dframe
Out[18]:
In [20]:
dframe.ix[['A','B','C', 'D', 'E', 'F'], new_columns]
Out[20]:
In [ ]: