Inference for Stan model: anon_model_b75445567ed4638c70765f73ec25f477.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
mu -2.56 3.9e-3 0.15 -2.86 -2.65 -2.55 -2.47 -2.28 1498 1.0
sigmasq 0.19 4.9e-3 0.15 0.03 0.09 0.15 0.22 0.61 997 1.0
b[0] -2.95 0.01 0.42 -3.94 -3.19 -2.9 -2.66 -2.27 1131 1.0
b[1] -2.19 5.4e-3 0.24 -2.64 -2.36 -2.19 -2.02 -1.71 2000 1.0
b[2] -2.62 6.2e-3 0.28 -3.2 -2.79 -2.61 -2.44 -2.11 2000 1.0
b[3] -2.77 3.3e-3 0.15 -3.07 -2.87 -2.77 -2.67 -2.49 2000 1.0
b[4] -2.94 6.2e-3 0.28 -3.53 -3.12 -2.93 -2.75 -2.46 2000 1.0
b[5] -2.62 5.2e-3 0.23 -3.13 -2.76 -2.61 -2.47 -2.19 2000 1.0
b[6] -2.67 5.8e-3 0.26 -3.23 -2.84 -2.67 -2.5 -2.19 2000 1.0
b[7] -1.98 6.2e-3 0.21 -2.4 -2.11 -1.97 -1.84 -1.59 1102 1.0
b[8] -2.61 4.8e-3 0.22 -3.05 -2.75 -2.6 -2.46 -2.21 2000 1.0
b[9] -2.5 6.2e-3 0.28 -3.1 -2.67 -2.49 -2.33 -1.95 2000 1.0
b[10] -2.19 4.2e-3 0.19 -2.57 -2.32 -2.19 -2.07 -1.83 2000 1.0
b[11] -2.62 4.1e-3 0.18 -2.96 -2.74 -2.62 -2.51 -2.27 2000 1.0
sigma 0.4 5.6e-3 0.15 0.16 0.3 0.38 0.47 0.78 736 1.0
p[0] 0.05 4.9e-4 0.02 0.02 0.04 0.05 0.07 0.09 1484 1.0
p[1] 0.1 5.0e-4 0.02 0.07 0.09 0.1 0.12 0.15 2000 1.0
p[2] 0.07 3.9e-4 0.02 0.04 0.06 0.07 0.08 0.11 2000 1.0
p[3] 0.06 1.8e-4 8.2e-3 0.04 0.05 0.06 0.06 0.08 2000 1.0
p[4] 0.05 2.9e-4 0.01 0.03 0.04 0.05 0.06 0.08 2000 1.0
p[5] 0.07 3.3e-4 0.01 0.04 0.06 0.07 0.08 0.1 2000 1.0
p[6] 0.07 3.5e-4 0.02 0.04 0.06 0.07 0.08 0.1 2000 1.0
p[7] 0.12 5.0e-4 0.02 0.08 0.11 0.12 0.14 0.17 2000 1.0
p[8] 0.07 3.1e-4 0.01 0.05 0.06 0.07 0.08 0.1 2000 1.0
p[9] 0.08 4.4e-4 0.02 0.04 0.06 0.08 0.09 0.12 2000 1.0
p[10] 0.1 3.8e-4 0.02 0.07 0.09 0.1 0.11 0.14 2000 1.0
p[11] 0.07 2.6e-4 0.01 0.05 0.06 0.07 0.08 0.09 2000 1.0
pop_mean 0.07 2.5e-410.0e-3 0.05 0.07 0.07 0.08 0.09 1553 1.0
lp__ -724.9 0.13 3.17 -732.0 -726.8 -724.6 -722.6 -719.5 584 1.0
Samples were drawn using NUTS at Thu Dec 7 18:16:55 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).