In [1]:
%matplotlib inline
In [2]:
import os, sys
sys.path.append(os.path.abspath('../../main/python'))
import numpy as np
import matplotlib.pyplot as plt
import thalesians.tsa.distrs as distrs
In [3]:
normal_distr = distrs.NormalDistr([3., 7.], [[4., -3.], [-3., 9.]])
In [4]:
normal_distr
Out[4]:
In [5]:
normal_distr.mean
Out[5]:
In [6]:
normal_distr.cov
Out[6]:
In [7]:
data = normal_distr.sample(1000)
In [8]:
np.shape(data)
Out[8]:
In [9]:
plt.plot(data, 'x');
In [10]:
empirical_distr = distrs.EmpiricalDistr(data)
In [11]:
empirical_distr.particle_count
Out[11]:
In [12]:
empirical_distr.dim
Out[12]:
In [13]:
empirical_distr.weight_sum
Out[13]:
In [14]:
empirical_distr.mean
Out[14]:
In [15]:
empirical_distr.var
Out[15]:
In [16]:
empirical_distr.cov
Out[16]:
In [17]:
empirical_distr.vol
In [18]:
empirical_distr.var_n
Out[18]:
In [19]:
empirical_distr.cov_n
Out[19]:
In [20]:
empirical_distr.vol_n
Out[20]:
In [21]:
empirical_distr.var_n_minus_1
Out[21]:
In [22]:
empirical_distr.cov_n_minus_1
Out[22]:
In [23]:
empirical_distr.vol_n_minus_1
Out[23]:
In [24]:
empirical_distr
Out[24]: