SHL Project

  • simulation module: shl_sm

shl_sm required data feeds:

  • live bidding price, per second, time series

prediction module parameters/csv

  • parm_si.csv (seasonality index per second)

  • parm_month.csv (parameter like alpha, beta, gamma, etc. per month)

SHL Simulation Module: shl_sm

Import useful reference packages


In [1]:
import pandas as pd

Import SHL Prediction Module: shl_pm


In [2]:
import shl_pm


+-----------------------------------------------+
| Loaded SHL Prediction Module                  |
| Version 0.0.0.1                               |
+-----------------------------------------------+

+-----------------------------------------------+
| SHL Prediction Module User Guide              |
+-----------------------------------------------+

+-----------------------------------------------+
| Key Function I: 
| shl_initialize(in_ccyy_mm='2017-07')
+-----------------------------------------------+

This function takes one input. Run this funciton once, before calling shl_predict_price_k_step()

Inputs:
(1) in_ccyy_mm: the (current) year month for predicting bidding price
    string, i.e. '2017-07'
    
Outputs: N.A.

+-----------------------------------------------+
| Key Function II: 
| shl_predict_price_k_step(in_current_time, in_current_price, in_k_seconds=1, return_value='f_1_step_pred_set_price_rounded')
+-----------------------------------------------+

This function takes four inputs then returns prediciton values in a python list.

Ensure this function is called 'once and only once' for EVERY second with price, starting from '11:29:00'! 
This is to ensure prediction module could capture all actual prices for internal prediction calculation.

Inputs:
(1) in_current_time: current time/second of bidding price
    string, i.e. '11:29:50'
(2) in_current_price : current bidding price
    number/integer/float, i.e. 89400
(3) in_k_seconds : forecast price in the next k seconds
    integer, default value = 1, i.e. 7
(4) return_value : return result of predicted price, or predicted set price = predicted price + dynamic increment
    string, i.e. 89600 predicted price     (return_value = 'f_1_step_pred_price_rounded')
    string, i.e. 89800 predicted set price (return_value = 'f_1_step_pred_set_price_rounded')

Outputs:
(1) Returned restuls in python list
    list of integer , i.e. [89800] (in_k_seconds = 1)
    list of integers, i.e. [89800, 89900, 89900, 90000, 90100, 90100, 90200] (in_k_seconds = 7)

shl_sm parameters:


In [ ]:

shl_sm simulated real time per second price ata, fetch from csv:


In [3]:
## which month to predictsimulate?

# shl_sm_parm_ccyy_mm = '2017-04'
# shl_sm_parm_ccyy_mm_offset = 1647

# shl_sm_parm_ccyy_mm = '2017-05'
# shl_sm_parm_ccyy_mm_offset = 1708

shl_sm_parm_ccyy_mm = '2017-06'
shl_sm_parm_ccyy_mm_offset = 1769

# shl_sm_parm_ccyy_mm = '2017-07'
# shl_sm_parm_ccyy_mm_offset = 1830

# shl_sm_parm_ccyy_mm = '2017-08'
# shl_sm_parm_ccyy_mm_offset = 1830+61

# shl_sm_parm_ccyy_mm = '2017-09'
# shl_sm_parm_ccyy_mm_offset = 1830+61*2

# shl_sm_parm_ccyy_mm = '2017-10'
# shl_sm_parm_ccyy_mm_offset = 1830+61*3

# shl_sm_parm_ccyy_mm = '2017-11'
# shl_sm_parm_ccyy_mm_offset = 1830+61*4

# shl_sm_parm_ccyy_mm = '2017-12'
# shl_sm_parm_ccyy_mm_offset = 1830+61*5

#----------------------------------

shl_sm_data = pd.read_csv('shl_sm_data/shl_sm_data.csv') 
shl_sm_data


Out[3]:
ccyy-mm time bid-price
0 2015-01 11:29:00 74000
1 2015-01 11:29:01 74000
2 2015-01 11:29:02 74000
3 2015-01 11:29:03 74000
4 2015-01 11:29:04 74000
5 2015-01 11:29:05 74000
6 2015-01 11:29:06 74000
7 2015-01 11:29:07 74000
8 2015-01 11:29:08 74000
9 2015-01 11:29:09 74000
10 2015-01 11:29:10 74000
11 2015-01 11:29:11 74000
12 2015-01 11:29:12 74000
13 2015-01 11:29:13 74000
14 2015-01 11:29:14 74000
15 2015-01 11:29:15 74000
16 2015-01 11:29:16 74000
17 2015-01 11:29:17 74000
18 2015-01 11:29:18 74000
19 2015-01 11:29:19 74000
20 2015-01 11:29:20 74000
21 2015-01 11:29:21 74000
22 2015-01 11:29:22 74000
23 2015-01 11:29:23 74000
24 2015-01 11:29:24 74000
25 2015-01 11:29:25 74000
26 2015-01 11:29:26 74000
27 2015-01 11:29:27 74000
28 2015-01 11:29:28 74000
29 2015-01 11:29:29 74000
... ... ... ...
2166 2017-12 11:29:31 90500
2167 2017-12 11:29:32 90500
2168 2017-12 11:29:33 90500
2169 2017-12 11:29:34 90500
2170 2017-12 11:29:35 90500
2171 2017-12 11:29:36 90600
2172 2017-12 11:29:37 90600
2173 2017-12 11:29:38 90600
2174 2017-12 11:29:39 90700
2175 2017-12 11:29:40 90700
2176 2017-12 11:29:41 90700
2177 2017-12 11:29:42 90700
2178 2017-12 11:29:43 90700
2179 2017-12 11:29:44 90800
2180 2017-12 11:29:45 90800
2181 2017-12 11:29:46 90800
2182 2017-12 11:29:47 90900
2183 2017-12 11:29:48 91000
2184 2017-12 11:29:49 91100
2185 2017-12 11:29:50 91100
2186 2017-12 11:29:51 91100
2187 2017-12 11:29:52 91100
2188 2017-12 11:29:53 91100
2189 2017-12 11:29:54 91200
2190 2017-12 11:29:55 91200
2191 2017-12 11:29:56 91200
2192 2017-12 11:29:57 91300
2193 2017-12 11:29:58 91300
2194 2017-12 11:29:59 91400
2195 2017-12 11:30:00 91600

2196 rows × 3 columns

shl_pm Initialization


In [4]:
shl_pm.shl_initialize(shl_sm_parm_ccyy_mm)


+-----------------------------------------------+
| shl_initialize()                              |
+-----------------------------------------------+

shl_global_parm_ccyy_mm           : 2017-06
-------------------------------------------------
shl_global_parm_alpha             : 0.777107313458705
shl_global_parm_beta              : 0.179154416550987
shl_global_parm_gamma             : 0.120598828573260
shl_global_parm_short_weight      : 0.1250000000
shl_global_parm_short_weight_ratio: 0.0000000000
shl_global_parm_sec57_weight      : 0.5000000000
shl_global_parm_month_weight      : 0.9000000000
shl_global_parm_dynamic_increment : 300
-------------------------------------------------

prediction results dataframe: shl_data_pm_1_step
Empty DataFrame
Columns: []
Index: []

prediction results dataframe: shl_data_pm_k_step
Empty DataFrame
Columns: []
Index: []

In [5]:
# Upon receiving 11:29:00 second price, to predict till 11:29:49 <- one-step forward price forecasting

for i in range(shl_sm_parm_ccyy_mm_offset, shl_sm_parm_ccyy_mm_offset+50): # use csv data as simulatino
# for i in range(shl_sm_parm_ccyy_mm_offset, shl_sm_parm_ccyy_mm_offset+55): # use csv data as simulatino
    print('\n<<<< Record No.: %5d >>>>' % i)
    print(shl_sm_data['ccyy-mm'][i]) # format: ccyy-mm
    print(shl_sm_data['time'][i]) # format: hh:mm:ss
    print(shl_sm_data['bid-price'][i]) # format: integer
    
######################################################################################################################    
#   call prediction function, returned result is in 'list' format, i.e. [89400]  
    shl_sm_prediction_list_local_1 = shl_pm.shl_predict_price_k_step(shl_sm_data['time'][i], shl_sm_data['bid-price'][i],1) # <- one-step forward price forecasting
    print(shl_sm_prediction_list_local_1)
######################################################################################################################


<<<< Record No.:  1769 >>>>
2017-06
11:29:00
88400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:00
in_current_price  : 88400.000000
*INFO* At time [ 11:29:00 ] Set shl_global_parm_base_price : 88399 
*INFO* f_current_datetime   : 2017-06 11:29:00 
*INFO* f_current_si         : 0.0023822132 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 419.7777140577 
*INFO* f_1_step_time        : 11:29:01
*INFO* f_1_step_si          : 0.0148610887 
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88700]
[88700]

<<<< Record No.:  1770 >>>>
2017-06
11:29:01
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:01
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:01 
*INFO* f_current_si         : 0.0148610887 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 6796.2719464957 
*INFO* f_1_step_time        : 11:29:02
*INFO* f_1_step_si          : 0.0237690555 
     previous_pred_les_level  : 419.7777140577
     previous_pred_les_trend  : 0.0000000000
     f_1_step_pred_les_level  : 5374.9980163125
     f_1_step_pred_les_trend  : 887.7496021321
     f_1_step_pred_les        : 6262.7476184446
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 6262.7476184446
     f_1_step_pred_price_inc          : 148.8595956607
     f_1_step_pred_price              : 88547.8595956607
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1771 >>>>
2017-06
11:29:02
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:02
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:02 
*INFO* f_current_si         : 0.0237690555 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 4249.2222732132 
*INFO* f_1_step_time        : 11:29:03
*INFO* f_1_step_si          : 0.0309433438 
     previous_pred_les_level  : 5374.9980163125
     previous_pred_les_trend  : 887.7496021321
     f_1_step_pred_les_level  : 4698.0223468308
     f_1_step_pred_les_trend  : 607.4221590335
     f_1_step_pred_les        : 5305.4445058643
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 5305.4445058643
     f_1_step_pred_price_inc          : 164.1681935706
     f_1_step_pred_price              : 88563.1681935706
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1772 >>>>
2017-06
11:29:03
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:03
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:03 
*INFO* f_current_si         : 0.0309433438 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 3264.0299161348 
*INFO* f_1_step_time        : 11:29:04
*INFO* f_1_step_si          : 0.0392121078 
     previous_pred_les_level  : 4698.0223468308
     previous_pred_les_trend  : 607.4221590335
     f_1_step_pred_les_level  : 3719.0462983842
     f_1_step_pred_les_trend  : 323.2119137549
     f_1_step_pred_les        : 4042.2582121391
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 4042.2582121391
     f_1_step_pred_price_inc          : 158.5054649628
     f_1_step_pred_price              : 88557.5054649628
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1773 >>>>
2017-06
11:29:04
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:04
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:04 
*INFO* f_current_si         : 0.0392121078 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 2575.7350355198 
*INFO* f_1_step_time        : 11:29:05
*INFO* f_1_step_si          : 0.0387689298 
     previous_pred_les_level  : 3719.0462983842
     previous_pred_les_trend  : 323.2119137549
     f_1_step_pred_les_level  : 2902.6123262315
     f_1_step_pred_les_trend  : 119.0393199904
     f_1_step_pred_les        : 3021.6516462219
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 3021.6516462219
     f_1_step_pred_price_inc          : 117.1462004869
     f_1_step_pred_price              : 88516.1462004869
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1774 >>>>
2017-06
11:29:05
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:05
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:05 
*INFO* f_current_si         : 0.0387689298 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 2605.1789558691 
*INFO* f_1_step_time        : 11:29:06
*INFO* f_1_step_si          : 0.0757339541 
     previous_pred_les_level  : 2902.6123262315
     previous_pred_les_trend  : 119.0393199904
     f_1_step_pred_les_level  : 2698.0076726929
     f_1_step_pred_les_trend  : 61.0570727425
     f_1_step_pred_les        : 2759.0647454354
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 2759.0647454354
     f_1_step_pred_price_inc          : 208.9548827838
     f_1_step_pred_price              : 88607.9548827838
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1775 >>>>
2017-06
11:29:06
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:06
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:06 
*INFO* f_current_si         : 0.0757339541 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 1333.6158292953 
*INFO* f_1_step_time        : 11:29:07
*INFO* f_1_step_si          : 0.0941974492 
     previous_pred_les_level  : 2698.0076726929
     previous_pred_les_trend  : 61.0570727425
     f_1_step_pred_les_level  : 1651.3379677411
     f_1_step_pred_les_trend  : -137.3970718132
     f_1_step_pred_les        : 1513.9408959279
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 1513.9408959279
     f_1_step_pred_price_inc          : 142.6093705948
     f_1_step_pred_price              : 88541.6093705948
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1776 >>>>
2017-06
11:29:07
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:07
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:07 
*INFO* f_current_si         : 0.0941974492 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 1072.2158708854 
*INFO* f_1_step_time        : 11:29:08
*INFO* f_1_step_si          : 0.1333750997 
     previous_pred_les_level  : 1651.3379677411
     previous_pred_les_trend  : -137.3970718132
     f_1_step_pred_les_level  : 1170.6731484297
     f_1_step_pred_les_trend  : -198.8950048370
     f_1_step_pred_les        : 971.7781435927
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 971.7781435927
     f_1_step_pred_price_inc          : 129.6110068231
     f_1_step_pred_price              : 88528.6110068231
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1777 >>>>
2017-06
11:29:08
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:08
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:08 
*INFO* f_current_si         : 0.1333750997 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 757.2627889299 
*INFO* f_1_step_time        : 11:29:09
*INFO* f_1_step_si          : 0.2041837362 
     previous_pred_les_level  : 1170.6731484297
     previous_pred_les_trend  : -198.8950048370
     f_1_step_pred_les_level  : 805.0766926351
     f_1_step_pred_les_trend  : -228.7603060215
     f_1_step_pred_les        : 576.3163866135
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 576.3163866135
     f_1_step_pred_price_inc          : 117.6744330551
     f_1_step_pred_price              : 88516.6744330551
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1778 >>>>
2017-06
11:29:09
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:09
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:09 
*INFO* f_current_si         : 0.2041837362 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 494.6525216798 
*INFO* f_1_step_time        : 11:29:10
*INFO* f_1_step_si          : 0.2321693821 
     previous_pred_les_level  : 805.0766926351
     previous_pred_les_trend  : -228.7603060215
     f_1_step_pred_les_level  : 512.8547999283
     f_1_step_pred_les_trend  : -240.1297295575
     f_1_step_pred_les        : 272.7250703707
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 272.7250703707
     f_1_step_pred_price_inc          : 63.3184110718
     f_1_step_pred_price              : 88462.3184110718
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1779 >>>>
2017-06
11:29:10
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:10
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:10 
*INFO* f_current_si         : 0.2321693821 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 435.0272162739 
*INFO* f_1_step_time        : 11:29:11
*INFO* f_1_step_si          : 0.2946054876 
     previous_pred_les_level  : 512.8547999283
     previous_pred_les_trend  : -240.1297295575
     f_1_step_pred_les_level  : 398.8512549422
     f_1_step_pred_les_trend  : -217.5336665488
     f_1_step_pred_les        : 181.3175883933
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 181.3175883933
     f_1_step_pred_price_inc          : 53.4171565479
     f_1_step_pred_price              : 88452.4171565479
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1780 >>>>
2017-06
11:29:11
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:11
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:11 
*INFO* f_current_si         : 0.2946054876 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 342.8313600204 
*INFO* f_1_step_time        : 11:29:12
*INFO* f_1_step_si          : 0.3488655530 
     previous_pred_les_level  : 398.8512549422
     previous_pred_les_trend  : -217.5336665488
     f_1_step_pred_les_level  : 306.8311215490
     f_1_step_pred_les_trend  : -195.0473627471
     f_1_step_pred_les        : 111.7837588020
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 111.7837588020
     f_1_step_pred_price_inc          : 38.9975028352
     f_1_step_pred_price              : 88437.9975028352
     f_1_step_pred_price_rounded      : 88400
     f_1_step_pred_set_price_rounded  : 88700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88700]
[88700]

<<<< Record No.:  1781 >>>>
2017-06
11:29:12
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:12
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:12 
*INFO* f_current_si         : 0.3488655530 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 289.5098100697 
*INFO* f_1_step_time        : 11:29:13
*INFO* f_1_step_si          : 0.3571459028 
     previous_pred_les_level  : 306.8311215490
     previous_pred_les_trend  : -195.0473627471
     f_1_step_pred_les_level  : 249.8959730343
     f_1_step_pred_les_trend  : -170.3039495877
     f_1_step_pred_les        : 79.5920234466
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 79.5920234466
     f_1_step_pred_price_inc          : 28.4259650669
     f_1_step_pred_price              : 88427.4259650669
     f_1_step_pred_price_rounded      : 88400
     f_1_step_pred_set_price_rounded  : 88700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88700]
[88700]

<<<< Record No.:  1782 >>>>
2017-06
11:29:13
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:13
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:13 
*INFO* f_current_si         : 0.3571459028 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 282.7975883738 
*INFO* f_1_step_time        : 11:29:14
*INFO* f_1_step_si          : 0.3775201623 
     previous_pred_les_level  : 249.8959730343
     previous_pred_les_trend  : -170.3039495877
     f_1_step_pred_les_level  : 237.5045540870
     f_1_step_pred_les_trend  : -142.0132222947
     f_1_step_pred_les        : 95.4913317923
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 95.4913317923
     f_1_step_pred_price_inc          : 36.0499030778
     f_1_step_pred_price              : 88435.0499030778
     f_1_step_pred_price_rounded      : 88400
     f_1_step_pred_set_price_rounded  : 88700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88700]
[88700]

<<<< Record No.:  1783 >>>>
2017-06
11:29:14
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:14
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:14 
*INFO* f_current_si         : 0.3775201623 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 267.5353797818 
*INFO* f_1_step_time        : 11:29:15
*INFO* f_1_step_si          : 0.4092913787 
     previous_pred_les_level  : 237.5045540870
     previous_pred_les_trend  : -142.0132222947
     f_1_step_pred_les_level  : 229.1880197220
     f_1_step_pred_les_trend  : -118.0608701739
     f_1_step_pred_les        : 111.1271495481
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 111.1271495481
     f_1_step_pred_price_inc          : 45.4833842537
     f_1_step_pred_price              : 88444.4833842537
     f_1_step_pred_price_rounded      : 88400
     f_1_step_pred_set_price_rounded  : 88700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88700]
[88700]

<<<< Record No.:  1784 >>>>
2017-06
11:29:15
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:15
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:15 
*INFO* f_current_si         : 0.4092913787 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 246.7679634778 
*INFO* f_1_step_time        : 11:29:16
*INFO* f_1_step_si          : 0.4206648773 
     previous_pred_les_level  : 229.1880197220
     previous_pred_les_trend  : -118.0608701739
     f_1_step_pred_les_level  : 216.5346180564
     f_1_step_pred_les_trend  : -99.1766566532
     f_1_step_pred_les        : 117.3579614032
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 117.3579614032
     f_1_step_pred_price_inc          : 49.3683724375
     f_1_step_pred_price              : 88448.3683724375
     f_1_step_pred_price_rounded      : 88400
     f_1_step_pred_set_price_rounded  : 88700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88700]
[88700]

<<<< Record No.:  1785 >>>>
2017-06
11:29:16
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:16
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:16 
*INFO* f_current_si         : 0.4206648773 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 240.0961084292 
*INFO* f_1_step_time        : 11:29:17
*INFO* f_1_step_si          : 0.4638547583 
     previous_pred_les_level  : 216.5346180564
     previous_pred_les_trend  : -99.1766566532
     f_1_step_pred_les_level  : 212.7386730975
     f_1_step_pred_les_trend  : -82.0887808994
     f_1_step_pred_les        : 130.6498921981
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 130.6498921981
     f_1_step_pred_price_inc          : 60.6025741668
     f_1_step_pred_price              : 88459.6025741668
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1786 >>>>
2017-06
11:29:17
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:17
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:17 
*INFO* f_current_si         : 0.4638547583 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 217.7405711463 
*INFO* f_1_step_time        : 11:29:18
*INFO* f_1_step_si          : 0.4951657818 
     previous_pred_les_level  : 212.7386730975
     previous_pred_les_trend  : -82.0887808994
     f_1_step_pred_les_level  : 198.3286957429
     f_1_step_pred_les_trend  : -69.9638243374
     f_1_step_pred_les        : 128.3648714054
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 128.3648714054
     f_1_step_pred_price_inc          : 63.5618919076
     f_1_step_pred_price              : 88462.5618919075
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1787 >>>>
2017-06
11:29:18
88500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:18
in_current_price  : 88500.000000
*INFO* f_current_datetime   : 2017-06 11:29:18 
*INFO* f_current_si         : 0.4951657818 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 203.9720911833 
*INFO* f_1_step_time        : 11:29:19
*INFO* f_1_step_si          : 0.5080609123 
     previous_pred_les_level  : 198.3286957429
     previous_pred_les_trend  : -69.9638243374
     f_1_step_pred_les_level  : 187.1197948451
     f_1_step_pred_les_trend  : -59.4376203091
     f_1_step_pred_les        : 127.6821745360
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 127.6821745360
     f_1_step_pred_price_inc          : 64.8703220840
     f_1_step_pred_price              : 88463.8703220840
     f_1_step_pred_price_rounded      : 88500
     f_1_step_pred_set_price_rounded  : 88800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88800]
[88800]

<<<< Record No.:  1788 >>>>
2017-06
11:29:19
88600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:19
in_current_price  : 88600.000000
*INFO* f_current_datetime   : 2017-06 11:29:19 
*INFO* f_current_si         : 0.5080609123 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 395.6218538349 
*INFO* f_1_step_time        : 11:29:20
*INFO* f_1_step_si          : 0.5316053511 
     previous_pred_les_level  : 187.1197948451
     previous_pred_les_trend  : -59.4376203091
     f_1_step_pred_les_level  : 335.9000588849
     f_1_step_pred_les_trend  : -22.1344667231
     f_1_step_pred_les        : 313.7655921619
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 313.7655921619
     f_1_step_pred_price_inc          : 166.7994677876
     f_1_step_pred_price              : 88565.7994677876
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1789 >>>>
2017-06
11:29:20
88600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:20
in_current_price  : 88600.000000
*INFO* f_current_datetime   : 2017-06 11:29:20 
*INFO* f_current_si         : 0.5316053511 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 378.1000314991 
*INFO* f_1_step_time        : 11:29:21
*INFO* f_1_step_si          : 0.5724520024 
     previous_pred_les_level  : 335.9000588849
     previous_pred_les_trend  : -22.1344667231
     f_1_step_pred_les_level  : 363.7603554781
     f_1_step_pred_les_trend  : -13.1776840706
     f_1_step_pred_les        : 350.5826714075
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 350.5826714075
     f_1_step_pred_price_inc          : 200.6917522398
     f_1_step_pred_price              : 88599.6917522398
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1790 >>>>
2017-06
11:29:21
88600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:21
in_current_price  : 88600.000000
*INFO* f_current_datetime   : 2017-06 11:29:21 
*INFO* f_current_si         : 0.5724520024 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 351.1211405873 
*INFO* f_1_step_time        : 11:29:22
*INFO* f_1_step_si          : 0.5843722489 
     previous_pred_les_level  : 363.7603554781
     previous_pred_les_trend  : -13.1776840706
     f_1_step_pred_les_level  : 351.0011197452
     f_1_step_pred_les_trend  : -13.1027172028
     f_1_step_pred_les        : 337.8984025425
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 337.8984025425
     f_1_step_pred_price_inc          : 197.4584493937
     f_1_step_pred_price              : 88596.4584493937
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1791 >>>>
2017-06
11:29:22
88600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:22
in_current_price  : 88600.000000
*INFO* f_current_datetime   : 2017-06 11:29:22 
*INFO* f_current_si         : 0.5843722489 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 343.9588385283 
*INFO* f_1_step_time        : 11:29:23
*INFO* f_1_step_si          : 0.5966521604 
     previous_pred_les_level  : 351.0011197452
     previous_pred_les_trend  : -13.1027172028
     f_1_step_pred_les_level  : 342.6080116698
     f_1_step_pred_les_trend  : -12.2589699274
     f_1_step_pred_les        : 330.3490417424
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 330.3490417424
     f_1_step_pred_price_inc          : 197.1034694274
     f_1_step_pred_price              : 88596.1034694274
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1792 >>>>
2017-06
11:29:23
88600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:23
in_current_price  : 88600.000000
*INFO* f_current_datetime   : 2017-06 11:29:23 
*INFO* f_current_si         : 0.5966521604 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 336.8796986838 
*INFO* f_1_step_time        : 11:29:24
*INFO* f_1_step_si          : 0.6276205911 
     previous_pred_les_level  : 342.6080116698
     previous_pred_les_trend  : -12.2589699274
     f_1_step_pred_les_level  : 335.4240630132
     f_1_step_pred_les_trend  : -11.3497574526
     f_1_step_pred_les        : 324.0743055606
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 324.0743055606
     f_1_step_pred_price_inc          : 203.3957072119
     f_1_step_pred_price              : 88602.3957072119
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1793 >>>>
2017-06
11:29:24
88600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:24
in_current_price  : 88600.000000
*INFO* f_current_datetime   : 2017-06 11:29:24 
*INFO* f_current_si         : 0.6276205911 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 320.2571790260 
*INFO* f_1_step_time        : 11:29:25
*INFO* f_1_step_si          : 0.6615943855 
     previous_pred_les_level  : 335.4240630132
     previous_pred_les_trend  : -11.3497574526
     f_1_step_pred_les_level  : 321.1079886141
     f_1_step_pred_les_trend  : -11.8811862345
     f_1_step_pred_les        : 309.2268023797
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 309.2268023797
     f_1_step_pred_price_inc          : 204.5827162878
     f_1_step_pred_price              : 88603.5827162878
     f_1_step_pred_price_rounded      : 88600
     f_1_step_pred_set_price_rounded  : 88900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [88900]
[88900]

<<<< Record No.:  1794 >>>>
2017-06
11:29:25
88700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:25
in_current_price  : 88700.000000
*INFO* f_current_datetime   : 2017-06 11:29:25 
*INFO* f_current_si         : 0.6615943855 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 454.9615392991 
*INFO* f_1_step_time        : 11:29:26
*INFO* f_1_step_si          : 0.6796086803 
     previous_pred_les_level  : 321.1079886141
     previous_pred_les_trend  : -11.8811862345
     f_1_step_pred_les_level  : 422.4783322647
     f_1_step_pred_les_trend  : 8.4083255256
     f_1_step_pred_les        : 430.8866577903
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 430.8866577903
     f_1_step_pred_price_inc          : 292.8343128567
     f_1_step_pred_price              : 88691.8343128567
     f_1_step_pred_price_rounded      : 88700
     f_1_step_pred_set_price_rounded  : 89000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89000]
[89000]

<<<< Record No.:  1795 >>>>
2017-06
11:29:26
88700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:26
in_current_price  : 88700.000000
*INFO* f_current_datetime   : 2017-06 11:29:26 
*INFO* f_current_si         : 0.6796086803 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 442.9019356702 
*INFO* f_1_step_time        : 11:29:27
*INFO* f_1_step_si          : 0.7008853554 
     previous_pred_les_level  : 422.4783322647
     previous_pred_les_trend  : 8.4083255256
     f_1_step_pred_les_level  : 440.2238181040
     f_1_step_pred_les_trend  : 10.0811190338
     f_1_step_pred_les        : 450.3049371378
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 450.3049371378
     f_1_step_pred_price_inc          : 315.6121359060
     f_1_step_pred_price              : 88714.6121359060
     f_1_step_pred_price_rounded      : 88700
     f_1_step_pred_set_price_rounded  : 89000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89000]
[89000]

<<<< Record No.:  1796 >>>>
2017-06
11:29:27
88700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:27
in_current_price  : 88700.000000
*INFO* f_current_datetime   : 2017-06 11:29:27 
*INFO* f_current_si         : 0.7008853554 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 429.4568258264 
*INFO* f_1_step_time        : 11:29:28
*INFO* f_1_step_si          : 0.7258007706 
     previous_pred_les_level  : 440.2238181040
     previous_pred_les_trend  : 10.0811190338
     f_1_step_pred_les_level  : 434.1037173659
     f_1_step_pred_les_trend  : 7.1785989582
     f_1_step_pred_les        : 441.2823163241
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 441.2823163241
     f_1_step_pred_price_inc          : 320.2830452621
     f_1_step_pred_price              : 88719.2830452621
     f_1_step_pred_price_rounded      : 88700
     f_1_step_pred_set_price_rounded  : 89000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89000]
[89000]

<<<< Record No.:  1797 >>>>
2017-06
11:29:28
88700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:28
in_current_price  : 88700.000000
*INFO* f_current_datetime   : 2017-06 11:29:28 
*INFO* f_current_si         : 0.7258007706 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 414.7143571240 
*INFO* f_1_step_time        : 11:29:29
*INFO* f_1_step_si          : 0.7406630214 
     previous_pred_les_level  : 434.1037173659
     previous_pred_les_trend  : 7.1785989582
     f_1_step_pred_les_level  : 420.6361609260
     f_1_step_pred_les_trend  : 3.4797490338
     f_1_step_pred_les        : 424.1159099598
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 424.1159099598
     f_1_step_pred_price_inc          : 314.1269713077
     f_1_step_pred_price              : 88713.1269713077
     f_1_step_pred_price_rounded      : 88700
     f_1_step_pred_set_price_rounded  : 89000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89000]
[89000]

<<<< Record No.:  1798 >>>>
2017-06
11:29:29
88700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:29
in_current_price  : 88700.000000
*INFO* f_current_datetime   : 2017-06 11:29:29 
*INFO* f_current_si         : 0.7406630214 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 406.3926391499 
*INFO* f_1_step_time        : 11:29:30
*INFO* f_1_step_si          : 0.7749686948 
     previous_pred_les_level  : 420.6361609260
     previous_pred_les_trend  : 3.4797490338
     f_1_step_pred_les_level  : 410.3430265950
     f_1_step_pred_les_trend  : 1.0122761504
     f_1_step_pred_les        : 411.3553027454
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 411.3553027454
     f_1_step_pred_price_inc          : 318.7874820707
     f_1_step_pred_price              : 88717.7874820708
     f_1_step_pred_price_rounded      : 88700
     f_1_step_pred_set_price_rounded  : 89000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89000]
[89000]

<<<< Record No.:  1799 >>>>
2017-06
11:29:30
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:30
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:30 
*INFO* f_current_si         : 0.7749686948 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 517.4402562152 
*INFO* f_1_step_time        : 11:29:31
*INFO* f_1_step_si          : 0.7967683455 
     previous_pred_les_level  : 410.3430265950
     previous_pred_les_trend  : 1.0122761504
     f_1_step_pred_les_level  : 493.7946959347
     f_1_step_pred_les_trend  : 15.7816575380
     f_1_step_pred_les        : 509.5763534728
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 509.5763534728
     f_1_step_pred_price_inc          : 406.0143080522
     f_1_step_pred_price              : 88805.0143080522
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1800 >>>>
2017-06
11:29:31
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:31
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:31 
*INFO* f_current_si         : 0.7967683455 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 503.2830461637 
*INFO* f_1_step_time        : 11:29:32
*INFO* f_1_step_si          : 0.8239920952 
     previous_pred_les_level  : 493.7946959347
     previous_pred_les_trend  : 15.7816575380
     f_1_step_pred_les_level  : 504.6857783371
     f_1_step_pred_les_trend  : 14.9054894030
     f_1_step_pred_les        : 519.5912677400
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 519.5912677400
     f_1_step_pred_price_inc          : 428.1390973348
     f_1_step_pred_price              : 88827.1390973348
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1801 >>>>
2017-06
11:29:32
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:32
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:32 
*INFO* f_current_si         : 0.8239920952 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 486.6551540394 
*INFO* f_1_step_time        : 11:29:33
*INFO* f_1_step_si          : 0.8456485559 
     previous_pred_les_level  : 504.6857783371
     previous_pred_les_trend  : 14.9054894030
     f_1_step_pred_les_level  : 493.9963729064
     f_1_step_pred_les_trend  : 10.3200509524
     f_1_step_pred_les        : 504.3164238588
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 504.3164238588
     f_1_step_pred_price_inc          : 426.4744555749
     f_1_step_pred_price              : 88825.4744555749
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1802 >>>>
2017-06
11:29:33
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:33
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:33 
*INFO* f_current_si         : 0.8456485559 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 474.1922601080 
*INFO* f_1_step_time        : 11:29:34
*INFO* f_1_step_si          : 0.8708946861 
     previous_pred_les_level  : 493.9963729064
     previous_pred_les_trend  : 10.3200509524
     f_1_step_pred_les_level  : 480.9067158962
     f_1_step_pred_les_trend  : 6.1260983807
     f_1_step_pred_les        : 487.0328142769
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 487.0328142769
     f_1_step_pred_price_inc          : 424.1542898994
     f_1_step_pred_price              : 88823.1542898994
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1803 >>>>
2017-06
11:29:34
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:34
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:34 
*INFO* f_current_si         : 0.8708946861 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 460.4460291357 
*INFO* f_1_step_time        : 11:29:35
*INFO* f_1_step_si          : 0.9278569942 
     previous_pred_les_level  : 480.9067158962
     previous_pred_les_trend  : 6.1260983807
     f_1_step_pred_les_level  : 466.3720291023
     f_1_step_pred_les_trend  : 2.4246274673
     f_1_step_pred_les        : 468.7966565696
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 468.7966565696
     f_1_step_pred_price_inc          : 434.9762566352
     f_1_step_pred_price              : 88833.9762566352
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1804 >>>>
2017-06
11:29:35
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:35
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:35 
*INFO* f_current_si         : 0.9278569942 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 432.1786681844 
*INFO* f_1_step_time        : 11:29:36
*INFO* f_1_step_si          : 0.9616321097 
     previous_pred_les_level  : 466.3720291023
     previous_pred_les_trend  : 2.4246274673
     f_1_step_pred_les_level  : 440.3405499913
     f_1_step_pred_les_trend  : -2.6734097041
     f_1_step_pred_les        : 437.6671402872
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 437.6671402872
     f_1_step_pred_price_inc          : 420.8747754763
     f_1_step_pred_price              : 88819.8747754763
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1805 >>>>
2017-06
11:29:36
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:36
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:36 
*INFO* f_current_si         : 0.9616321097 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 416.9993867096 
*INFO* f_1_step_time        : 11:29:37
*INFO* f_1_step_si          : 0.9787400282 
     previous_pred_les_level  : 440.3405499913
     previous_pred_les_trend  : -2.6734097041
     f_1_step_pred_les_level  : 421.6060778293
     f_1_step_pred_les_trend  : -5.5508199779
     f_1_step_pred_les        : 416.0552578514
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 416.0552578514
     f_1_step_pred_price_inc          : 407.2099347858
     f_1_step_pred_price              : 88806.2099347858
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1806 >>>>
2017-06
11:29:37
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:37
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:37 
*INFO* f_current_si         : 0.9787400282 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 409.7104322520 
*INFO* f_1_step_time        : 11:29:38
*INFO* f_1_step_si          : 0.9870518518 
     previous_pred_les_level  : 421.6060778293
     previous_pred_les_trend  : -5.5508199779
     f_1_step_pred_les_level  : 411.1246474755
     f_1_step_pred_les_trend  : -6.4341606030
     f_1_step_pred_les        : 404.6904868724
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 404.6904868724
     f_1_step_pred_price_inc          : 399.4504944668
     f_1_step_pred_price              : 88798.4504944668
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1807 >>>>
2017-06
11:29:38
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:38
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:38 
*INFO* f_current_si         : 0.9870518518 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 406.2603188224 
*INFO* f_1_step_time        : 11:29:39
*INFO* f_1_step_si          : 1.0277287334 
     previous_pred_les_level  : 411.1246474755
     previous_pred_les_trend  : -6.4341606030
     f_1_step_pred_les_level  : 405.9104147617
     f_1_step_pred_les_trend  : -6.2156051338
     f_1_step_pred_les        : 399.6948096279
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 399.6948096279
     f_1_step_pred_price_inc          : 410.7778404440
     f_1_step_pred_price              : 88809.7778404440
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1808 >>>>
2017-06
11:29:39
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:39
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:39 
*INFO* f_current_si         : 1.0277287334 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 390.1807811432 
*INFO* f_1_step_time        : 11:29:40
*INFO* f_1_step_si          : 1.0732818240 
     previous_pred_les_level  : 405.9104147617
     previous_pred_les_trend  : -6.2156051338
     f_1_step_pred_les_level  : 392.3013885120
     f_1_step_pred_les_trend  : -7.5401691801
     f_1_step_pred_les        : 384.7612193319
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 384.7612193319
     f_1_step_pred_price_inc          : 412.9572233069
     f_1_step_pred_price              : 88811.9572233069
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1809 >>>>
2017-06
11:29:40
88800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:40
in_current_price  : 88800.000000
*INFO* f_current_datetime   : 2017-06 11:29:40 
*INFO* f_current_si         : 1.0732818240 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 373.6204145227 
*INFO* f_1_step_time        : 11:29:41
*INFO* f_1_step_si          : 1.1014312083 
     previous_pred_les_level  : 392.3013885120
     previous_pred_les_trend  : -7.5401691801
     f_1_step_pred_les_level  : 376.1036184369
     f_1_step_pred_les_trend  : -9.0912166172
     f_1_step_pred_les        : 367.0124018197
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 367.0124018197
     f_1_step_pred_price_inc          : 404.2389131860
     f_1_step_pred_price              : 88803.2389131860
     f_1_step_pred_price_rounded      : 88800
     f_1_step_pred_set_price_rounded  : 89100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89100]
[89100]

<<<< Record No.:  1810 >>>>
2017-06
11:29:41
88900
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:41
in_current_price  : 88900.000000
*INFO* f_current_datetime   : 2017-06 11:29:41 
*INFO* f_current_si         : 1.1014312083 
*INFO* f_current_price4pm   : 501 
*INFO* f_current_price4pmsi : 454.8627242797 
*INFO* f_1_step_time        : 11:29:42
*INFO* f_1_step_si          : 1.1636423891 
     previous_pred_les_level  : 376.1036184369
     previous_pred_les_trend  : -9.0912166172
     f_1_step_pred_les_level  : 435.2815298931
     f_1_step_pred_les_trend  : 3.1394991912
     f_1_step_pred_les        : 438.4210290843
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 438.4210290843
     f_1_step_pred_price_inc          : 510.1652937123
     f_1_step_pred_price              : 88909.1652937123
     f_1_step_pred_price_rounded      : 88900
     f_1_step_pred_set_price_rounded  : 89200
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89200]
[89200]

<<<< Record No.:  1811 >>>>
2017-06
11:29:42
88900
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:42
in_current_price  : 88900.000000
*INFO* f_current_datetime   : 2017-06 11:29:42 
*INFO* f_current_si         : 1.1636423891 
*INFO* f_current_price4pm   : 501 
*INFO* f_current_price4pmsi : 430.5446455852 
*INFO* f_1_step_time        : 11:29:43
*INFO* f_1_step_si          : 1.2770115614 
     previous_pred_les_level  : 435.2815298931
     previous_pred_les_trend  : 3.1394991912
     f_1_step_pred_les_level  : 432.3002338635
     f_1_step_pred_les_trend  : 2.0429316946
     f_1_step_pred_les        : 434.3431655582
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 434.3431655582
     f_1_step_pred_price_inc          : 554.6612440165
     f_1_step_pred_price              : 88953.6612440165
     f_1_step_pred_price_rounded      : 89000
     f_1_step_pred_set_price_rounded  : 89300
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89300]
[89300]

<<<< Record No.:  1812 >>>>
2017-06
11:29:43
89000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:43
in_current_price  : 89000.000000
*INFO* f_current_datetime   : 2017-06 11:29:43 
*INFO* f_current_si         : 1.2770115614 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 470.6300382737 
*INFO* f_1_step_time        : 11:29:44
*INFO* f_1_step_si          : 1.3885120709 
     previous_pred_les_level  : 432.3002338635
     previous_pred_les_trend  : 2.0429316946
     f_1_step_pred_les_level  : 462.5419597280
     f_1_step_pred_les_trend  : 7.0948702116
     f_1_step_pred_les        : 469.6368299395
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 469.6368299395
     f_1_step_pred_price_inc          : 652.0964073328
     f_1_step_pred_price              : 89051.0964073328
     f_1_step_pred_price_rounded      : 89100
     f_1_step_pred_set_price_rounded  : 89400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89400]
[89400]

<<<< Record No.:  1813 >>>>
2017-06
11:29:44
89000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:44
in_current_price  : 89000.000000
*INFO* f_current_datetime   : 2017-06 11:29:44 
*INFO* f_current_si         : 1.3885120709 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 432.8374326553 
*INFO* f_1_step_time        : 11:29:45
*INFO* f_1_step_si          : 1.4408790775 
     previous_pred_les_level  : 462.5419597280
     previous_pred_les_trend  : 7.0948702116
     f_1_step_pred_les_level  : 441.0397491791
     f_1_step_pred_les_trend  : 1.9715768929
     f_1_step_pred_les        : 443.0113260719
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 443.0113260719
     f_1_step_pred_price_inc          : 638.3257508481
     f_1_step_pred_price              : 89037.3257508481
     f_1_step_pred_price_rounded      : 89000
     f_1_step_pred_set_price_rounded  : 89300
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89300]
[89300]

<<<< Record No.:  1814 >>>>
2017-06
11:29:45
89100
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:45
in_current_price  : 89100.000000
*INFO* f_current_datetime   : 2017-06 11:29:45 
*INFO* f_current_si         : 1.4408790775 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 486.5085564287 
*INFO* f_1_step_time        : 11:29:46
*INFO* f_1_step_si          : 1.5694557714 
     previous_pred_les_level  : 441.0397491791
     previous_pred_les_trend  : 1.9715768929
     f_1_step_pred_les_level  : 476.8133418974
     f_1_step_pred_les_trend  : 8.0273573163
     f_1_step_pred_les        : 484.8406992137
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 484.8406992137
     f_1_step_pred_price_inc          : 760.9360335720
     f_1_step_pred_price              : 89159.9360335720
     f_1_step_pred_price_rounded      : 89200
     f_1_step_pred_set_price_rounded  : 89500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89500]
[89500]

<<<< Record No.:  1815 >>>>
2017-06
11:29:46
89100
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:46
in_current_price  : 89100.000000
*INFO* f_current_datetime   : 2017-06 11:29:46 
*INFO* f_current_si         : 1.5694557714 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 446.6516437044 
*INFO* f_1_step_time        : 11:29:47
*INFO* f_1_step_si          : 1.6448651013 
     previous_pred_les_level  : 476.8133418974
     previous_pred_les_trend  : 8.0273573163
     f_1_step_pred_les_level  : 455.1637048833
     f_1_step_pred_les_trend  : 2.7105927121
     f_1_step_pred_les        : 457.8742975954
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 457.8742975954
     f_1_step_pred_price_inc          : 753.1414529177
     f_1_step_pred_price              : 89152.1414529177
     f_1_step_pred_price_rounded      : 89200
     f_1_step_pred_set_price_rounded  : 89500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89500]
[89500]

<<<< Record No.:  1816 >>>>
2017-06
11:29:47
89100
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:47
in_current_price  : 89100.000000
*INFO* f_current_datetime   : 2017-06 11:29:47 
*INFO* f_current_si         : 1.6448651013 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 426.1747662021 
*INFO* f_1_step_time        : 11:29:48
*INFO* f_1_step_si          : 1.7484231604 
     previous_pred_les_level  : 455.1637048833
     previous_pred_les_trend  : 2.7105927121
     f_1_step_pred_les_level  : 433.2403599165
     f_1_step_pred_les_trend  : -1.7026860202
     f_1_step_pred_les        : 431.5376738963
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 431.5376738963
     f_1_step_pred_price_inc          : 754.5104636382
     f_1_step_pred_price              : 89153.5104636382
     f_1_step_pred_price_rounded      : 89200
     f_1_step_pred_set_price_rounded  : 89500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89500]
[89500]

<<<< Record No.:  1817 >>>>
2017-06
11:29:48
89100
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:48
in_current_price  : 89100.000000
*INFO* f_current_datetime   : 2017-06 11:29:48 
*INFO* f_current_si         : 1.7484231604 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 400.9326894456 
*INFO* f_1_step_time        : 11:29:49
*INFO* f_1_step_si          : 1.7903136447 
     previous_pred_les_level  : 433.2403599165
     previous_pred_les_trend  : -1.7026860202
     f_1_step_pred_les_level  : 407.7543166514
     f_1_step_pred_les_trend  : -5.9635795110
     f_1_step_pred_les        : 401.7907371404
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 401.7907371404
     f_1_step_pred_price_inc          : 719.3314390018
     f_1_step_pred_price              : 89118.3314390018
     f_1_step_pred_price_rounded      : 89100
     f_1_step_pred_set_price_rounded  : 89400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89400]
[89400]

<<<< Record No.:  1818 >>>>
2017-06
11:29:49
89100
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:49
in_current_price  : 89100.000000
*INFO* f_current_datetime   : 2017-06 11:29:49 
*INFO* f_current_si         : 1.7903136447 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 391.5515038885 
*INFO* f_1_step_time        : 11:29:50
*INFO* f_1_step_si          : 1.9309782795 
     previous_pred_les_level  : 407.7543166514
     previous_pred_les_trend  : -5.9635795110
     f_1_step_pred_les_level  : 393.8337540961
     f_1_step_pred_les_trend  : -7.3891081658
     f_1_step_pred_les        : 386.4446459303
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 386.4446459303
     f_1_step_pred_price_inc          : 746.2162175027
     f_1_step_pred_price              : 89145.2162175027
     f_1_step_pred_price_rounded      : 89100
     f_1_step_pred_set_price_rounded  : 89400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89400]
[89400]

In [6]:
# Upon receiving 11:29:50 second price, to predict till 11:30:00 <- ten-step forward price forecasting

for i in range(shl_sm_parm_ccyy_mm_offset+50, shl_sm_parm_ccyy_mm_offset+51): # use csv data as simulation
    print('\n<<<< Record No.: %5d >>>>' % i)
    print(shl_sm_data['ccyy-mm'][i]) # format: ccyy-mm
    print(shl_sm_data['time'][i]) # format: hh:mm:ss
    print(shl_sm_data['bid-price'][i]) # format: integer/boost-trap-float
    
######################################################################################################################    
#   call prediction function, returned result is in 'list' format, i.e. [89400, 89400, 89400, 89500, 89500, 89500, 89500, 89600, 89600, 89600]  
    shl_sm_prediction_list_local_k = shl_pm.shl_predict_price_k_step(shl_sm_data['time'][i], shl_sm_data['bid-price'][i],10) # <- ten-step forward price forecasting
    print(shl_sm_prediction_list_local_k)
######################################################################################################################


<<<< Record No.:  1819 >>>>
2017-06
11:29:50
89100
==>> Forecasting   1 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:50
in_current_price  : 89100.000000
*INFO* f_current_datetime   : 2017-06 11:29:50 
*INFO* f_current_si         : 1.9309782795 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 363.0284231878 
*INFO* f_1_step_time        : 11:29:51
*INFO* f_1_step_si          : 2.0018259434 
*INFO* sec50_error          : 45.2162175027
*INFO* sec46_49_error       : 183.9193891297
*INFO* shl_global_parm_short_weight_misc  : 45.8271213265
*INFO* shl_global_parm_short_weight_ratio : 1
     previous_pred_les_level  : 393.8337540961
     previous_pred_les_trend  : -7.3891081658
     f_1_step_pred_les_level  : 368.2477279835
     f_1_step_pred_les_trend  : -10.6491663836
     f_1_step_pred_les        : 357.5985616000
     f_1_step_pred_adj_misc   : 0.6908371436
     pred_les + pred_adj_misc : 358.2893987436
     f_1_step_pred_price_inc          : 717.2330136484
     f_1_step_pred_price              : 89116.2330136484
     f_1_step_pred_price_rounded      : 89100
     f_1_step_pred_set_price_rounded  : 89400
-------------------------------------------------
==>> Forecasting   2 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:51
in_current_price  : 89116.233014
*INFO* f_current_datetime   : 2017-06 11:29:51 
*INFO* f_current_si         : 2.0018259434 
*INFO* f_current_price4pm   : 717 
*INFO* f_current_price4pmsi : 358.2893987436 
*INFO* f_1_step_time        : 11:29:52
*INFO* f_1_step_si          : 2.0608409575 
*INFO* shl_global_parm_short_weight_ratio : 2
     previous_pred_les_level  : 368.2477279835
     previous_pred_les_trend  : -10.6491663836
     f_1_step_pred_les_level  : 358.1354161967
     f_1_step_pred_les_trend  : -10.5529865115
     f_1_step_pred_les        : 347.5824296851
     f_1_step_pred_adj_misc   : 1.3816742872
     pred_les + pred_adj_misc : 348.9641039723
     f_1_step_pred_price_inc          : 719.1595181679
     f_1_step_pred_price              : 89118.1595181679
     f_1_step_pred_price_rounded      : 89100
     f_1_step_pred_set_price_rounded  : 89400
-------------------------------------------------
==>> Forecasting   3 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:52
in_current_price  : 89118.159518
*INFO* f_current_datetime   : 2017-06 11:29:52 
*INFO* f_current_si         : 2.0608409575 
*INFO* f_current_price4pm   : 719 
*INFO* f_current_price4pmsi : 348.9641039723 
*INFO* f_1_step_time        : 11:29:53
*INFO* f_1_step_si          : 2.1669312844 
*INFO* shl_global_parm_short_weight_ratio : 3
     previous_pred_les_level  : 358.1354161967
     previous_pred_les_trend  : -10.5529865115
     f_1_step_pred_les_level  : 348.6561388785
     f_1_step_pred_les_trend  : -10.3606267674
     f_1_step_pred_les        : 338.2955121111
     f_1_step_pred_adj_misc   : 2.0725114308
     pred_les + pred_adj_misc : 340.3680235419
     f_1_step_pred_price_inc          : 737.5541184282
     f_1_step_pred_price              : 89136.5541184282
     f_1_step_pred_price_rounded      : 89100
     f_1_step_pred_set_price_rounded  : 89400
-------------------------------------------------
==>> Forecasting   4 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:53
in_current_price  : 89136.554118
*INFO* f_current_datetime   : 2017-06 11:29:53 
*INFO* f_current_si         : 2.1669312844 
*INFO* f_current_price4pm   : 737 
*INFO* f_current_price4pmsi : 340.3680235419 
*INFO* f_1_step_time        : 11:29:54
*INFO* f_1_step_si          : 2.2854831719 
*INFO* shl_global_parm_short_weight_ratio : 4
     previous_pred_les_level  : 348.6561388785
     previous_pred_les_trend  : -10.3606267674
     f_1_step_pred_les_level  : 339.9060759012
     f_1_step_pred_les_trend  : -10.0720871513
     f_1_step_pred_les        : 329.8339887499
     f_1_step_pred_adj_misc   : 2.7633485744
     pred_les + pred_adj_misc : 332.5973373243
     f_1_step_pred_price_inc          : 760.1456174595
     f_1_step_pred_price              : 89159.1456174595
     f_1_step_pred_price_rounded      : 89200
     f_1_step_pred_set_price_rounded  : 89500
-------------------------------------------------
==>> Forecasting   5 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:54
in_current_price  : 89159.145617
*INFO* f_current_datetime   : 2017-06 11:29:54 
*INFO* f_current_si         : 2.2854831719 
*INFO* f_current_price4pm   : 760 
*INFO* f_current_price4pmsi : 332.5973373243 
*INFO* f_1_step_time        : 11:29:55
*INFO* f_1_step_si          : 2.4051380825 
*INFO* shl_global_parm_short_weight_ratio : 5
     previous_pred_les_level  : 339.9060759012
     previous_pred_les_trend  : -10.0720871513
     f_1_step_pred_les_level  : 331.9814071367
     f_1_step_pred_les_trend  : -9.6873676631
     f_1_step_pred_les        : 322.2940394736
     f_1_step_pred_adj_misc   : 3.4541857180
     pred_les + pred_adj_misc : 325.7482251916
     f_1_step_pred_price_inc          : 783.4694617175
     f_1_step_pred_price              : 89182.4694617175
     f_1_step_pred_price_rounded      : 89200
     f_1_step_pred_set_price_rounded  : 89500
-------------------------------------------------
==>> Forecasting   6 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:55
in_current_price  : 89182.469462
*INFO* f_current_datetime   : 2017-06 11:29:55 
*INFO* f_current_si         : 2.4051380825 
*INFO* f_current_price4pm   : 783 
*INFO* f_current_price4pmsi : 325.7482251916 
*INFO* f_1_step_time        : 11:29:56
*INFO* f_1_step_si          : 2.5395496217 
*INFO* shl_global_parm_short_weight_ratio : 6
     previous_pred_les_level  : 331.9814071367
     previous_pred_les_trend  : -9.6873676631
     f_1_step_pred_les_level  : 324.9783124571
     f_1_step_pred_les_trend  : -9.2064683029
     f_1_step_pred_les        : 315.7718441542
     f_1_step_pred_adj_misc   : 4.1450228616
     pred_les + pred_adj_misc : 319.9168670159
     f_1_step_pred_price_inc          : 812.4447586070
     f_1_step_pred_price              : 89211.4447586070
     f_1_step_pred_price_rounded      : 89200
     f_1_step_pred_set_price_rounded  : 89500
-------------------------------------------------
==>> Forecasting   7 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:56
in_current_price  : 89211.444759
*INFO* f_current_datetime   : 2017-06 11:29:56 
*INFO* f_current_si         : 2.5395496217 
*INFO* f_current_price4pm   : 812 
*INFO* f_current_price4pmsi : 319.9168670159 
*INFO* f_1_step_time        : 11:29:57
*INFO* f_1_step_si          : 2.6922988441 
*INFO* shl_global_parm_short_weight_ratio : 7
     previous_pred_les_level  : 324.9783124571
     previous_pred_les_trend  : -9.2064683029
     f_1_step_pred_les_level  : 318.9929717345
     f_1_step_pred_les_trend  : -8.6293890706
     f_1_step_pred_les        : 310.3635826639
     f_1_step_pred_adj_misc   : 4.8358600053
     pred_les + pred_adj_misc : 315.1994426691
     f_1_step_pred_price_inc          : 848.6110951716
     f_1_step_pred_price              : 89247.6110951716
     f_1_step_pred_price_rounded      : 89200
     f_1_step_pred_set_price_rounded  : 89500
-------------------------------------------------
==>> Forecasting   8 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:57
in_current_price  : 89247.611095
*INFO* f_current_datetime   : 2017-06 11:29:57 
*INFO* f_current_si         : 2.6922988441 
*INFO* f_current_price4pm   : 848 
*INFO* f_current_price4pmsi : 315.1994426691 
*INFO* f_1_step_time        : 11:29:58
*INFO* f_1_step_si          : 2.7559213247 
*INFO* shl_global_parm_short_weight_ratio : 8
     previous_pred_les_level  : 318.9929717345
     previous_pred_les_trend  : -8.6293890706
     f_1_step_pred_les_level  : 314.1215648408
     f_1_step_pred_les_trend  : -7.9561299663
     f_1_step_pred_les        : 306.1654348745
     f_1_step_pred_adj_misc   : 5.5266971489
     pred_les + pred_adj_misc : 311.6921320234
     f_1_step_pred_price_inc          : 858.9989933841
     f_1_step_pred_price              : 89257.9989933841
     f_1_step_pred_price_rounded      : 89300
     f_1_step_pred_set_price_rounded  : 89600
-------------------------------------------------
==>> Forecasting   9 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:58
in_current_price  : 89257.998993
*INFO* f_current_datetime   : 2017-06 11:29:58 
*INFO* f_current_si         : 2.7559213247 
*INFO* f_current_price4pm   : 858 
*INFO* f_current_price4pmsi : 311.6921320234 
*INFO* f_1_step_time        : 11:29:59
*INFO* f_1_step_si          : 2.9170470952 
*INFO* shl_global_parm_short_weight_ratio : 9
     previous_pred_les_level  : 314.1215648408
     previous_pred_les_trend  : -7.9561299663
     f_1_step_pred_les_level  : 310.4602716481
     f_1_step_pred_les_trend  : -7.1866909899
     f_1_step_pred_les        : 303.2735806582
     f_1_step_pred_adj_misc   : 6.2175342925
     pred_les + pred_adj_misc : 309.4911149507
     f_1_step_pred_price_inc          : 902.8001578506
     f_1_step_pred_price              : 89301.8001578506
     f_1_step_pred_price_rounded      : 89300
     f_1_step_pred_set_price_rounded  : 89600
-------------------------------------------------
==>> Forecasting  10 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-06
in_current_time   : 11:29:59
in_current_price  : 89301.800158
*INFO* f_current_datetime   : 2017-06 11:29:59 
*INFO* f_current_si         : 2.9170470952 
*INFO* f_current_price4pm   : 902 
*INFO* f_current_price4pmsi : 309.4911149507 
*INFO* f_1_step_time        : 11:30:00
*INFO* f_1_step_si          : 3.0648617499 
*INFO* shl_global_parm_short_weight_ratio : 10
     previous_pred_les_level  : 310.4602716481
     previous_pred_les_trend  : -7.1866909899
     f_1_step_pred_les_level  : 308.1052720286
     f_1_step_pred_les_trend  : -6.3210721415
     f_1_step_pred_les        : 301.7841998870
     f_1_step_pred_adj_misc   : 6.9083714361
     pred_les + pred_adj_misc : 308.6925713231
     f_1_step_pred_price_inc          : 946.1000543343
     f_1_step_pred_price              : 89345.1000543343
     f_1_step_pred_price_rounded      : 89300
     f_1_step_pred_set_price_rounded  : 89600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [89400, 89400, 89400, 89500, 89500, 89500, 89500, 89600, 89600, 89600]
[89400, 89400, 89400, 89500, 89500, 89500, 89500, 89600, 89600, 89600]

In [7]:
print(shl_sm_prediction_list_local_k)


[89400, 89400, 89400, 89500, 89500, 89500, 89500, 89600, 89600, 89600]

In [8]:
shl_pm.shl_data_pm_1_step.tail(11)


Out[8]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
40 2017-06 0.000000 367.012402 376.103618 -9.091217 88803.238913 404.238913 88800.0 89100.0 1.101431 11:29:41 88800.0 2017-06 11:29:40 401.0 373.620415 1.073282
41 2017-06 0.000000 438.421029 435.281530 3.139499 88909.165294 510.165294 88900.0 89200.0 1.163642 11:29:42 88900.0 2017-06 11:29:41 501.0 454.862724 1.101431
42 2017-06 0.000000 434.343166 432.300234 2.042932 88953.661244 554.661244 89000.0 89300.0 1.277012 11:29:43 88900.0 2017-06 11:29:42 501.0 430.544646 1.163642
43 2017-06 0.000000 469.636830 462.541960 7.094870 89051.096407 652.096407 89100.0 89400.0 1.388512 11:29:44 89000.0 2017-06 11:29:43 601.0 470.630038 1.277012
44 2017-06 0.000000 443.011326 441.039749 1.971577 89037.325751 638.325751 89000.0 89300.0 1.440879 11:29:45 89000.0 2017-06 11:29:44 601.0 432.837433 1.388512
45 2017-06 0.000000 484.840699 476.813342 8.027357 89159.936034 760.936034 89200.0 89500.0 1.569456 11:29:46 89100.0 2017-06 11:29:45 701.0 486.508556 1.440879
46 2017-06 0.000000 457.874298 455.163705 2.710593 89152.141453 753.141453 89200.0 89500.0 1.644865 11:29:47 89100.0 2017-06 11:29:46 701.0 446.651644 1.569456
47 2017-06 0.000000 431.537674 433.240360 -1.702686 89153.510464 754.510464 89200.0 89500.0 1.748423 11:29:48 89100.0 2017-06 11:29:47 701.0 426.174766 1.644865
48 2017-06 0.000000 401.790737 407.754317 -5.963580 89118.331439 719.331439 89100.0 89400.0 1.790314 11:29:49 89100.0 2017-06 11:29:48 701.0 400.932689 1.748423
49 2017-06 0.000000 386.444646 393.833754 -7.389108 89145.216218 746.216218 89100.0 89400.0 1.930978 11:29:50 89100.0 2017-06 11:29:49 701.0 391.551504 1.790314
50 2017-06 0.690837 357.598562 368.247728 -10.649166 89116.233014 717.233014 89100.0 89400.0 2.001826 11:29:51 89100.0 2017-06 11:29:50 701.0 363.028423 1.930978

In [9]:
shl_pm.shl_data_pm_k_step.tail(20)


Out[9]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
40 2017-06 0.000000 367.012402 376.103618 -9.091217 88803.238913 404.238913 88800.0 89100.0 1.101431 11:29:41 88800.000000 2017-06 11:29:40 401.000000 373.620415 1.073282
41 2017-06 0.000000 438.421029 435.281530 3.139499 88909.165294 510.165294 88900.0 89200.0 1.163642 11:29:42 88900.000000 2017-06 11:29:41 501.000000 454.862724 1.101431
42 2017-06 0.000000 434.343166 432.300234 2.042932 88953.661244 554.661244 89000.0 89300.0 1.277012 11:29:43 88900.000000 2017-06 11:29:42 501.000000 430.544646 1.163642
43 2017-06 0.000000 469.636830 462.541960 7.094870 89051.096407 652.096407 89100.0 89400.0 1.388512 11:29:44 89000.000000 2017-06 11:29:43 601.000000 470.630038 1.277012
44 2017-06 0.000000 443.011326 441.039749 1.971577 89037.325751 638.325751 89000.0 89300.0 1.440879 11:29:45 89000.000000 2017-06 11:29:44 601.000000 432.837433 1.388512
45 2017-06 0.000000 484.840699 476.813342 8.027357 89159.936034 760.936034 89200.0 89500.0 1.569456 11:29:46 89100.000000 2017-06 11:29:45 701.000000 486.508556 1.440879
46 2017-06 0.000000 457.874298 455.163705 2.710593 89152.141453 753.141453 89200.0 89500.0 1.644865 11:29:47 89100.000000 2017-06 11:29:46 701.000000 446.651644 1.569456
47 2017-06 0.000000 431.537674 433.240360 -1.702686 89153.510464 754.510464 89200.0 89500.0 1.748423 11:29:48 89100.000000 2017-06 11:29:47 701.000000 426.174766 1.644865
48 2017-06 0.000000 401.790737 407.754317 -5.963580 89118.331439 719.331439 89100.0 89400.0 1.790314 11:29:49 89100.000000 2017-06 11:29:48 701.000000 400.932689 1.748423
49 2017-06 0.000000 386.444646 393.833754 -7.389108 89145.216218 746.216218 89100.0 89400.0 1.930978 11:29:50 89100.000000 2017-06 11:29:49 701.000000 391.551504 1.790314
50 2017-06 0.690837 357.598562 368.247728 -10.649166 89116.233014 717.233014 89100.0 89400.0 2.001826 11:29:51 89100.000000 2017-06 11:29:50 701.000000 363.028423 1.930978
51 2017-06 1.381674 347.582430 358.135416 -10.552987 89118.159518 719.159518 89100.0 89400.0 2.060841 11:29:52 89116.233014 2017-06 11:29:51 717.233014 358.289399 2.001826
52 2017-06 2.072511 338.295512 348.656139 -10.360627 89136.554118 737.554118 89100.0 89400.0 2.166931 11:29:53 89118.159518 2017-06 11:29:52 719.159518 348.964104 2.060841
53 2017-06 2.763349 329.833989 339.906076 -10.072087 89159.145617 760.145617 89200.0 89500.0 2.285483 11:29:54 89136.554118 2017-06 11:29:53 737.554118 340.368024 2.166931
54 2017-06 3.454186 322.294039 331.981407 -9.687368 89182.469462 783.469462 89200.0 89500.0 2.405138 11:29:55 89159.145617 2017-06 11:29:54 760.145617 332.597337 2.285483
55 2017-06 4.145023 315.771844 324.978312 -9.206468 89211.444759 812.444759 89200.0 89500.0 2.539550 11:29:56 89182.469462 2017-06 11:29:55 783.469462 325.748225 2.405138
56 2017-06 4.835860 310.363583 318.992972 -8.629389 89247.611095 848.611095 89200.0 89500.0 2.692299 11:29:57 89211.444759 2017-06 11:29:56 812.444759 319.916867 2.539550
57 2017-06 5.526697 306.165435 314.121565 -7.956130 89257.998993 858.998993 89300.0 89600.0 2.755921 11:29:58 89247.611095 2017-06 11:29:57 848.611095 315.199443 2.692299
58 2017-06 6.217534 303.273581 310.460272 -7.186691 89301.800158 902.800158 89300.0 89600.0 2.917047 11:29:59 89257.998993 2017-06 11:29:58 858.998993 311.692132 2.755921
59 2017-06 6.908371 301.784200 308.105272 -6.321072 89345.100054 946.100054 89300.0 89600.0 3.064862 11:30:00 89301.800158 2017-06 11:29:59 902.800158 309.491115 2.917047

In [ ]:

MISC - Validation


In [10]:
%matplotlib inline
import matplotlib.pyplot as plt

In [11]:
shl_data_pm_k_step_local = shl_pm.shl_data_pm_k_step.copy()
shl_data_pm_k_step_local.index = shl_data_pm_k_step_local.index + 1
shl_data_pm_k_step_local


Out[11]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
1 2017-06 0.000000 419.777714 419.777714 0.000000 88405.238354 6.238354 88400.0 88700.0 0.014861 11:29:01 88400.000000 2017-06 11:29:00 1.000000 419.777714 0.002382
2 2017-06 0.000000 6262.747618 5374.998016 887.749602 88547.859596 148.859596 88500.0 88800.0 0.023769 11:29:02 88500.000000 2017-06 11:29:01 101.000000 6796.271946 0.014861
3 2017-06 0.000000 5305.444506 4698.022347 607.422159 88563.168194 164.168194 88600.0 88900.0 0.030943 11:29:03 88500.000000 2017-06 11:29:02 101.000000 4249.222273 0.023769
4 2017-06 0.000000 4042.258212 3719.046298 323.211914 88557.505465 158.505465 88600.0 88900.0 0.039212 11:29:04 88500.000000 2017-06 11:29:03 101.000000 3264.029916 0.030943
5 2017-06 0.000000 3021.651646 2902.612326 119.039320 88516.146200 117.146200 88500.0 88800.0 0.038769 11:29:05 88500.000000 2017-06 11:29:04 101.000000 2575.735036 0.039212
6 2017-06 0.000000 2759.064745 2698.007673 61.057073 88607.954883 208.954883 88600.0 88900.0 0.075734 11:29:06 88500.000000 2017-06 11:29:05 101.000000 2605.178956 0.038769
7 2017-06 0.000000 1513.940896 1651.337968 -137.397072 88541.609371 142.609371 88500.0 88800.0 0.094197 11:29:07 88500.000000 2017-06 11:29:06 101.000000 1333.615829 0.075734
8 2017-06 0.000000 971.778144 1170.673148 -198.895005 88528.611007 129.611007 88500.0 88800.0 0.133375 11:29:08 88500.000000 2017-06 11:29:07 101.000000 1072.215871 0.094197
9 2017-06 0.000000 576.316387 805.076693 -228.760306 88516.674433 117.674433 88500.0 88800.0 0.204184 11:29:09 88500.000000 2017-06 11:29:08 101.000000 757.262789 0.133375
10 2017-06 0.000000 272.725070 512.854800 -240.129730 88462.318411 63.318411 88500.0 88800.0 0.232169 11:29:10 88500.000000 2017-06 11:29:09 101.000000 494.652522 0.204184
11 2017-06 0.000000 181.317588 398.851255 -217.533667 88452.417157 53.417157 88500.0 88800.0 0.294605 11:29:11 88500.000000 2017-06 11:29:10 101.000000 435.027216 0.232169
12 2017-06 0.000000 111.783759 306.831122 -195.047363 88437.997503 38.997503 88400.0 88700.0 0.348866 11:29:12 88500.000000 2017-06 11:29:11 101.000000 342.831360 0.294605
13 2017-06 0.000000 79.592023 249.895973 -170.303950 88427.425965 28.425965 88400.0 88700.0 0.357146 11:29:13 88500.000000 2017-06 11:29:12 101.000000 289.509810 0.348866
14 2017-06 0.000000 95.491332 237.504554 -142.013222 88435.049903 36.049903 88400.0 88700.0 0.377520 11:29:14 88500.000000 2017-06 11:29:13 101.000000 282.797588 0.357146
15 2017-06 0.000000 111.127150 229.188020 -118.060870 88444.483384 45.483384 88400.0 88700.0 0.409291 11:29:15 88500.000000 2017-06 11:29:14 101.000000 267.535380 0.377520
16 2017-06 0.000000 117.357961 216.534618 -99.176657 88448.368372 49.368372 88400.0 88700.0 0.420665 11:29:16 88500.000000 2017-06 11:29:15 101.000000 246.767963 0.409291
17 2017-06 0.000000 130.649892 212.738673 -82.088781 88459.602574 60.602574 88500.0 88800.0 0.463855 11:29:17 88500.000000 2017-06 11:29:16 101.000000 240.096108 0.420665
18 2017-06 0.000000 128.364871 198.328696 -69.963824 88462.561892 63.561892 88500.0 88800.0 0.495166 11:29:18 88500.000000 2017-06 11:29:17 101.000000 217.740571 0.463855
19 2017-06 0.000000 127.682175 187.119795 -59.437620 88463.870322 64.870322 88500.0 88800.0 0.508061 11:29:19 88500.000000 2017-06 11:29:18 101.000000 203.972091 0.495166
20 2017-06 0.000000 313.765592 335.900059 -22.134467 88565.799468 166.799468 88600.0 88900.0 0.531605 11:29:20 88600.000000 2017-06 11:29:19 201.000000 395.621854 0.508061
21 2017-06 0.000000 350.582671 363.760355 -13.177684 88599.691752 200.691752 88600.0 88900.0 0.572452 11:29:21 88600.000000 2017-06 11:29:20 201.000000 378.100031 0.531605
22 2017-06 0.000000 337.898403 351.001120 -13.102717 88596.458449 197.458449 88600.0 88900.0 0.584372 11:29:22 88600.000000 2017-06 11:29:21 201.000000 351.121141 0.572452
23 2017-06 0.000000 330.349042 342.608012 -12.258970 88596.103469 197.103469 88600.0 88900.0 0.596652 11:29:23 88600.000000 2017-06 11:29:22 201.000000 343.958839 0.584372
24 2017-06 0.000000 324.074306 335.424063 -11.349757 88602.395707 203.395707 88600.0 88900.0 0.627621 11:29:24 88600.000000 2017-06 11:29:23 201.000000 336.879699 0.596652
25 2017-06 0.000000 309.226802 321.107989 -11.881186 88603.582716 204.582716 88600.0 88900.0 0.661594 11:29:25 88600.000000 2017-06 11:29:24 201.000000 320.257179 0.627621
26 2017-06 0.000000 430.886658 422.478332 8.408326 88691.834313 292.834313 88700.0 89000.0 0.679609 11:29:26 88700.000000 2017-06 11:29:25 301.000000 454.961539 0.661594
27 2017-06 0.000000 450.304937 440.223818 10.081119 88714.612136 315.612136 88700.0 89000.0 0.700885 11:29:27 88700.000000 2017-06 11:29:26 301.000000 442.901936 0.679609
28 2017-06 0.000000 441.282316 434.103717 7.178599 88719.283045 320.283045 88700.0 89000.0 0.725801 11:29:28 88700.000000 2017-06 11:29:27 301.000000 429.456826 0.700885
29 2017-06 0.000000 424.115910 420.636161 3.479749 88713.126971 314.126971 88700.0 89000.0 0.740663 11:29:29 88700.000000 2017-06 11:29:28 301.000000 414.714357 0.725801
30 2017-06 0.000000 411.355303 410.343027 1.012276 88717.787482 318.787482 88700.0 89000.0 0.774969 11:29:30 88700.000000 2017-06 11:29:29 301.000000 406.392639 0.740663
31 2017-06 0.000000 509.576353 493.794696 15.781658 88805.014308 406.014308 88800.0 89100.0 0.796768 11:29:31 88800.000000 2017-06 11:29:30 401.000000 517.440256 0.774969
32 2017-06 0.000000 519.591268 504.685778 14.905489 88827.139097 428.139097 88800.0 89100.0 0.823992 11:29:32 88800.000000 2017-06 11:29:31 401.000000 503.283046 0.796768
33 2017-06 0.000000 504.316424 493.996373 10.320051 88825.474456 426.474456 88800.0 89100.0 0.845649 11:29:33 88800.000000 2017-06 11:29:32 401.000000 486.655154 0.823992
34 2017-06 0.000000 487.032814 480.906716 6.126098 88823.154290 424.154290 88800.0 89100.0 0.870895 11:29:34 88800.000000 2017-06 11:29:33 401.000000 474.192260 0.845649
35 2017-06 0.000000 468.796657 466.372029 2.424627 88833.976257 434.976257 88800.0 89100.0 0.927857 11:29:35 88800.000000 2017-06 11:29:34 401.000000 460.446029 0.870895
36 2017-06 0.000000 437.667140 440.340550 -2.673410 88819.874775 420.874775 88800.0 89100.0 0.961632 11:29:36 88800.000000 2017-06 11:29:35 401.000000 432.178668 0.927857
37 2017-06 0.000000 416.055258 421.606078 -5.550820 88806.209935 407.209935 88800.0 89100.0 0.978740 11:29:37 88800.000000 2017-06 11:29:36 401.000000 416.999387 0.961632
38 2017-06 0.000000 404.690487 411.124647 -6.434161 88798.450494 399.450494 88800.0 89100.0 0.987052 11:29:38 88800.000000 2017-06 11:29:37 401.000000 409.710432 0.978740
39 2017-06 0.000000 399.694810 405.910415 -6.215605 88809.777840 410.777840 88800.0 89100.0 1.027729 11:29:39 88800.000000 2017-06 11:29:38 401.000000 406.260319 0.987052
40 2017-06 0.000000 384.761219 392.301389 -7.540169 88811.957223 412.957223 88800.0 89100.0 1.073282 11:29:40 88800.000000 2017-06 11:29:39 401.000000 390.180781 1.027729
41 2017-06 0.000000 367.012402 376.103618 -9.091217 88803.238913 404.238913 88800.0 89100.0 1.101431 11:29:41 88800.000000 2017-06 11:29:40 401.000000 373.620415 1.073282
42 2017-06 0.000000 438.421029 435.281530 3.139499 88909.165294 510.165294 88900.0 89200.0 1.163642 11:29:42 88900.000000 2017-06 11:29:41 501.000000 454.862724 1.101431
43 2017-06 0.000000 434.343166 432.300234 2.042932 88953.661244 554.661244 89000.0 89300.0 1.277012 11:29:43 88900.000000 2017-06 11:29:42 501.000000 430.544646 1.163642
44 2017-06 0.000000 469.636830 462.541960 7.094870 89051.096407 652.096407 89100.0 89400.0 1.388512 11:29:44 89000.000000 2017-06 11:29:43 601.000000 470.630038 1.277012
45 2017-06 0.000000 443.011326 441.039749 1.971577 89037.325751 638.325751 89000.0 89300.0 1.440879 11:29:45 89000.000000 2017-06 11:29:44 601.000000 432.837433 1.388512
46 2017-06 0.000000 484.840699 476.813342 8.027357 89159.936034 760.936034 89200.0 89500.0 1.569456 11:29:46 89100.000000 2017-06 11:29:45 701.000000 486.508556 1.440879
47 2017-06 0.000000 457.874298 455.163705 2.710593 89152.141453 753.141453 89200.0 89500.0 1.644865 11:29:47 89100.000000 2017-06 11:29:46 701.000000 446.651644 1.569456
48 2017-06 0.000000 431.537674 433.240360 -1.702686 89153.510464 754.510464 89200.0 89500.0 1.748423 11:29:48 89100.000000 2017-06 11:29:47 701.000000 426.174766 1.644865
49 2017-06 0.000000 401.790737 407.754317 -5.963580 89118.331439 719.331439 89100.0 89400.0 1.790314 11:29:49 89100.000000 2017-06 11:29:48 701.000000 400.932689 1.748423
50 2017-06 0.000000 386.444646 393.833754 -7.389108 89145.216218 746.216218 89100.0 89400.0 1.930978 11:29:50 89100.000000 2017-06 11:29:49 701.000000 391.551504 1.790314
51 2017-06 0.690837 357.598562 368.247728 -10.649166 89116.233014 717.233014 89100.0 89400.0 2.001826 11:29:51 89100.000000 2017-06 11:29:50 701.000000 363.028423 1.930978
52 2017-06 1.381674 347.582430 358.135416 -10.552987 89118.159518 719.159518 89100.0 89400.0 2.060841 11:29:52 89116.233014 2017-06 11:29:51 717.233014 358.289399 2.001826
53 2017-06 2.072511 338.295512 348.656139 -10.360627 89136.554118 737.554118 89100.0 89400.0 2.166931 11:29:53 89118.159518 2017-06 11:29:52 719.159518 348.964104 2.060841
54 2017-06 2.763349 329.833989 339.906076 -10.072087 89159.145617 760.145617 89200.0 89500.0 2.285483 11:29:54 89136.554118 2017-06 11:29:53 737.554118 340.368024 2.166931
55 2017-06 3.454186 322.294039 331.981407 -9.687368 89182.469462 783.469462 89200.0 89500.0 2.405138 11:29:55 89159.145617 2017-06 11:29:54 760.145617 332.597337 2.285483
56 2017-06 4.145023 315.771844 324.978312 -9.206468 89211.444759 812.444759 89200.0 89500.0 2.539550 11:29:56 89182.469462 2017-06 11:29:55 783.469462 325.748225 2.405138
57 2017-06 4.835860 310.363583 318.992972 -8.629389 89247.611095 848.611095 89200.0 89500.0 2.692299 11:29:57 89211.444759 2017-06 11:29:56 812.444759 319.916867 2.539550
58 2017-06 5.526697 306.165435 314.121565 -7.956130 89257.998993 858.998993 89300.0 89600.0 2.755921 11:29:58 89247.611095 2017-06 11:29:57 848.611095 315.199443 2.692299
59 2017-06 6.217534 303.273581 310.460272 -7.186691 89301.800158 902.800158 89300.0 89600.0 2.917047 11:29:59 89257.998993 2017-06 11:29:58 858.998993 311.692132 2.755921
60 2017-06 6.908371 301.784200 308.105272 -6.321072 89345.100054 946.100054 89300.0 89600.0 3.064862 11:30:00 89301.800158 2017-06 11:29:59 902.800158 309.491115 2.917047

In [12]:
# bid is predicted bid-price from shl_pm
plt.figure(figsize=(12,6))
plt.plot(shl_pm.shl_data_pm_k_step['f_current_bid'])
# plt.plot(shl_data_pm_1_step_k_step['f_1_step_pred_price'].shift(1))
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price'])

# bid is actual bid-price from raw dataset
shl_data_actual_bid_local = shl_sm_data[shl_sm_parm_ccyy_mm_offset:shl_sm_parm_ccyy_mm_offset+61].copy()
shl_data_actual_bid_local.reset_index(inplace=True)
plt.figure(figsize=(12,6))
plt.plot(shl_data_actual_bid_local['bid-price'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price'])

plt.figure(figsize=(12,6))
plt.plot(shl_data_actual_bid_local['bid-price'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price_rounded'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_set_price_rounded'])


Out[12]:
[<matplotlib.lines.Line2D at 0x7fa15f26e400>]

In [13]:
print('Dynamic Increment : +%d' % shl_pm.shl_global_parm_dynamic_increment)


Dynamic Increment : +300

In [14]:
# pd.concat([shl_data_actual_bid_local['bid-price'], shl_data_pm_k_step_local['f_1_step_pred_price'], shl_data_pm_k_step_local['f_1_step_pred_price'] - shl_data_actual_bid_local['bid-price']], axis=1, join='inner')
pd.concat([shl_data_actual_bid_local['bid-price'].tail(11), shl_data_pm_k_step_local['f_1_step_pred_price'].tail(11), shl_data_pm_k_step_local['f_1_step_pred_price'].tail(11) - shl_data_actual_bid_local['bid-price'].tail(11)], axis=1, join='inner')


Out[14]:
bid-price f_1_step_pred_price 0
50 89100 89145.216218 45.216218
51 89100 89116.233014 16.233014
52 89100 89118.159518 18.159518
53 89200 89136.554118 -63.445882
54 89200 89159.145617 -40.854383
55 89200 89182.469462 -17.530538
56 89200 89211.444759 11.444759
57 89300 89247.611095 -52.388905
58 89300 89257.998993 -42.001007
59 89300 89301.800158 1.800158
60 89400 89345.100054 -54.899946

The End