SHL Project

  • simulation module: shl_sm

shl_sm required data feeds:

  • live bidding price, per second, time series

prediction module parameters/csv

  • parm_si.csv (seasonality index per second)

  • parm_month.csv (parameter like alpha, beta, gamma, etc. per month)

SHL Simulation Module: shl_sm

Import useful reference packages


In [1]:
import pandas as pd

Import SHL Prediction Module: shl_pm


In [2]:
import shl_pm


+-----------------------------------------------+
| Loaded SHL Prediction Module                  |
| Version 0.0.0.1                               |
+-----------------------------------------------+

+-----------------------------------------------+
| SHL Prediction Module User Guide              |
+-----------------------------------------------+

+-----------------------------------------------+
| Key Function I: 
| shl_initialize(in_ccyy_mm='2017-07')
+-----------------------------------------------+

This function takes one input. Run this funciton once, before calling shl_predict_price_k_step()

Inputs:
(1) in_ccyy_mm: the (current) year month for predicting bidding price
    string, i.e. '2017-07'
    
Outputs: N.A.

+-----------------------------------------------+
| Key Function II: 
| shl_predict_price_k_step(in_current_time, in_current_price, in_k_seconds=1, return_value='f_1_step_pred_set_price_rounded')
+-----------------------------------------------+

This function takes four inputs then returns prediciton values in a python list.

Ensure this function is called 'once and only once' for EVERY second with price, starting from '11:29:00'! 
This is to ensure prediction module could capture all actual prices for internal prediction calculation.

Inputs:
(1) in_current_time: current time/second of bidding price
    string, i.e. '11:29:50'
(2) in_current_price : current bidding price
    number/integer/float, i.e. 89400
(3) in_k_seconds : forecast price in the next k seconds
    integer, default value = 1, i.e. 7
(4) return_value : return result of predicted price, or predicted set price = predicted price + dynamic increment
    string, i.e. 89600 predicted price     (return_value = 'f_1_step_pred_price_rounded')
    string, i.e. 89800 predicted set price (return_value = 'f_1_step_pred_set_price_rounded')

Outputs:
(1) Returned restuls in python list
    list of integer , i.e. [89800] (in_k_seconds = 1)
    list of integers, i.e. [89800, 89900, 89900, 90000, 90100, 90100, 90200] (in_k_seconds = 7)

shl_sm parameters:


In [ ]:

shl_sm simulated real time per second price ata, fetch from csv:


In [3]:
# which month to predictsimulate?

# shl_sm_parm_ccyy_mm = '2017-04'
# shl_sm_parm_ccyy_mm_offset = 1647

# shl_sm_parm_ccyy_mm = '2017-05'
# shl_sm_parm_ccyy_mm_offset = 1708

# shl_sm_parm_ccyy_mm = '2017-06'
# shl_sm_parm_ccyy_mm_offset = 1769

shl_sm_parm_ccyy_mm = '2017-07'
shl_sm_parm_ccyy_mm_offset = 1830

#----------------------------------

shl_sm_data = pd.read_csv('shl_sm_data/history_ts.csv') 
shl_sm_data


Out[3]:
ccyy-mm time bid-price ref-price
0 2015-01 11:29:00 74000 74000
1 2015-01 11:29:01 74000 74000
2 2015-01 11:29:02 74000 74000
3 2015-01 11:29:03 74000 74000
4 2015-01 11:29:04 74000 74000
5 2015-01 11:29:05 74000 74000
6 2015-01 11:29:06 74000 74000
7 2015-01 11:29:07 74000 74000
8 2015-01 11:29:08 74000 74000
9 2015-01 11:29:09 74000 74000
10 2015-01 11:29:10 74000 74000
11 2015-01 11:29:11 74000 74000
12 2015-01 11:29:12 74000 74000
13 2015-01 11:29:13 74000 74000
14 2015-01 11:29:14 74000 74000
15 2015-01 11:29:15 74000 74000
16 2015-01 11:29:16 74000 74000
17 2015-01 11:29:17 74000 74000
18 2015-01 11:29:18 74000 74000
19 2015-01 11:29:19 74000 74000
20 2015-01 11:29:20 74000 74000
21 2015-01 11:29:21 74000 74000
22 2015-01 11:29:22 74000 74000
23 2015-01 11:29:23 74000 74000
24 2015-01 11:29:24 74000 74000
25 2015-01 11:29:25 74000 74000
26 2015-01 11:29:26 74000 74000
27 2015-01 11:29:27 74000 74000
28 2015-01 11:29:28 74000 74000
29 2015-01 11:29:29 74000 74000
... ... ... ... ...
1861 2017-07 11:29:31 90700 89800
1862 2017-07 11:29:32 90700 89800
1863 2017-07 11:29:33 90700 89800
1864 2017-07 11:29:34 90700 89800
1865 2017-07 11:29:35 90800 89800
1866 2017-07 11:29:36 90800 89800
1867 2017-07 11:29:37 90900 89800
1868 2017-07 11:29:38 91000 89800
1869 2017-07 11:29:39 91000 89800
1870 2017-07 11:29:40 91000 89800
1871 2017-07 11:29:41 91000 89800
1872 2017-07 11:29:42 91000 89800
1873 2017-07 11:29:43 91000 89800
1874 2017-07 11:29:44 91100 89800
1875 2017-07 11:29:45 91100 89800
1876 2017-07 11:29:46 91200 89800
1877 2017-07 11:29:47 91300 89800
1878 2017-07 11:29:48 91400 89800
1879 2017-07 11:29:49 91400 89800
1880 2017-07 11:29:50 91500 89800
1881 2017-07 11:29:51 91600 89800
1882 2017-07 11:29:52 91700 89800
1883 2017-07 11:29:53 91800 89800
1884 2017-07 11:29:54 91900 89800
1885 2017-07 11:29:55 92000 89800
1886 2017-07 11:29:56 92100 89800
1887 2017-07 11:29:57 92100 89800
1888 2017-07 11:29:58 92100 89800
1889 2017-07 11:29:59 92200 89800
1890 2017-07 11:30:00 92200 89800

1891 rows × 4 columns

shl_pm Initialization


In [4]:
shl_pm.shl_initialize(shl_sm_parm_ccyy_mm)


+-----------------------------------------------+
| shl_initialize()                              |
+-----------------------------------------------+

shl_global_parm_ccyy_mm           : 2017-07
-------------------------------------------------
shl_global_parm_alpha             : 0.636279780099081
shl_global_parm_beta              : 0.237518711616408
shl_global_parm_gamma             : 0.223562510966253
shl_global_parm_short_weight      : 0.1250000000
shl_global_parm_short_weight_ratio: 0.0000000000
shl_global_parm_sec57_weight      : 0.5000000000
shl_global_parm_month_weight      : 0.9000000000
shl_global_parm_dynamic_increment : 300
-------------------------------------------------

prediction results dataframe: shl_data_pm_1_step
Empty DataFrame
Columns: []
Index: []

prediction results dataframe: shl_data_pm_k_step
Empty DataFrame
Columns: []
Index: []

In [5]:
# Upon receiving 11:29:00 second price, to predict till 11:29:49 <- one-step forward price forecasting

for i in range(shl_sm_parm_ccyy_mm_offset, shl_sm_parm_ccyy_mm_offset+50): # use csv data as simulatino
# for i in range(shl_sm_parm_ccyy_mm_offset, shl_sm_parm_ccyy_mm_offset+55): # use csv data as simulatino
    print('\n<<<< Record No.: %5d >>>>' % i)
    print(shl_sm_data['ccyy-mm'][i]) # format: ccyy-mm
    print(shl_sm_data['time'][i]) # format: hh:mm:ss
    print(shl_sm_data['bid-price'][i]) # format: integer
    
######################################################################################################################    
#   call prediction function, returned result is in 'list' format, i.e. [89400]  
    shl_sm_prediction_list_local_1 = shl_pm.shl_predict_price_k_step(shl_sm_data['time'][i], shl_sm_data['bid-price'][i],1) # <- one-step forward price forecasting
    print(shl_sm_prediction_list_local_1)
######################################################################################################################


<<<< Record No.:  1830 >>>>
2017-07
11:29:00
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:00
in_current_price  : 90400.000000
*INFO* At time [ 11:29:00 ] Set shl_global_parm_base_price : 90399 
*INFO* f_current_datetime   : 2017-07 11:29:00 
*INFO* f_current_si         : 0.0023669570 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 422.4833826724 
*INFO* f_1_step_time        : 11:29:01
*INFO* f_1_step_si          : 0.0223882810 
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1831 >>>>
2017-07
11:29:01
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:01
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:01 
*INFO* f_current_si         : 0.0223882810 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 44.6662251559 
*INFO* f_1_step_time        : 11:29:02
*INFO* f_1_step_si          : 0.0309107700 
     previous_pred_les_level  : 422.4833826724
     previous_pred_les_trend  : 0.0000000000
     f_1_step_pred_les_level  : 182.0859647701
     f_1_step_pred_les_trend  : -57.0988849760
     f_1_step_pred_les        : 124.9870797941
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 124.9870797941
     f_1_step_pred_price_inc          : 3.8634468765
     f_1_step_pred_price              : 90402.8634468765
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1832 >>>>
2017-07
11:29:02
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:02
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:02 
*INFO* f_current_si         : 0.0309107700 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 32.3511837460 
*INFO* f_1_step_time        : 11:29:03
*INFO* f_1_step_si          : 0.0377696020 
     previous_pred_les_level  : 182.0859647701
     previous_pred_les_trend  : -57.0988849760
     f_1_step_pred_les_level  : 66.0447322273
     f_1_step_pred_les_trend  : -71.0987954298
     f_1_step_pred_les        : -5.0540632024
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -5.0540632024
     f_1_step_pred_price_inc          : -0.1908899556
     f_1_step_pred_price              : 90398.8091100444
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1833 >>>>
2017-07
11:29:03
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:03
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:03 
*INFO* f_current_si         : 0.0377696020 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 26.4763181778 
*INFO* f_1_step_time        : 11:29:04
*INFO* f_1_step_si          : 0.0457052300 
     previous_pred_les_level  : 66.0447322273
     previous_pred_les_trend  : -71.0987954298
     f_1_step_pred_les_level  : 15.0080809286
     f_1_step_pred_les_trend  : -66.3336608035
     f_1_step_pred_les        : -51.3255798749
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -51.3255798749
     f_1_step_pred_price_inc          : -2.3458474331
     f_1_step_pred_price              : 90396.6541525669
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1834 >>>>
2017-07
11:29:04
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:04
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:04 
*INFO* f_current_si         : 0.0457052300 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 21.8793341594 
*INFO* f_1_step_time        : 11:29:05
*INFO* f_1_step_si          : 0.0452799070 
     previous_pred_les_level  : 15.0080809286
     previous_pred_les_trend  : -66.3336608035
     f_1_step_pred_les_level  : -4.7467732710
     f_1_step_pred_les_trend  : -55.2703226703
     f_1_step_pred_les        : -60.0170959413
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -60.0170959413
     f_1_step_pred_price_inc          : -2.7175685226
     f_1_step_pred_price              : 90396.2824314774
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1835 >>>>
2017-07
11:29:05
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:05
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:05 
*INFO* f_current_si         : 0.0452799070 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 22.0848510135 
*INFO* f_1_step_time        : 11:29:06
*INFO* f_1_step_si          : 0.0807556680 
     previous_pred_les_level  : -4.7467732710
     previous_pred_les_trend  : -55.2703226703
     f_1_step_pred_les_level  : -7.7772871872
     f_1_step_pred_les_trend  : -42.8623905999
     f_1_step_pred_les        : -50.6396777871
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -50.6396777871
     f_1_step_pred_price_inc          : -4.0894410070
     f_1_step_pred_price              : 90394.9105589930
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1836 >>>>
2017-07
11:29:06
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:06
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:06 
*INFO* f_current_si         : 0.0807556680 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 12.3830317396 
*INFO* f_1_step_time        : 11:29:07
*INFO* f_1_step_si          : 0.0985017130 
     previous_pred_les_level  : -7.7772871872
     previous_pred_les_trend  : -42.8623905999
     f_1_step_pred_les_level  : -10.5396020282
     f_1_step_pred_les_trend  : -33.3378722700
     f_1_step_pred_les        : -43.8774742981
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -43.8774742981
     f_1_step_pred_price_inc          : -4.3220063805
     f_1_step_pred_price              : 90394.6779936195
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1837 >>>>
2017-07
11:29:07
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:07
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:07 
*INFO* f_current_si         : 0.0985017130 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 10.1521077100 
*INFO* f_1_step_time        : 11:29:08
*INFO* f_1_step_si          : 0.1361543100 
     previous_pred_les_level  : -10.5396020282
     previous_pred_les_trend  : -33.3378722700
     f_1_step_pred_les_level  : -9.4995437391
     f_1_step_pred_les_trend  : -25.1724704955
     f_1_step_pred_les        : -34.6720142347
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -34.6720142347
     f_1_step_pred_price_inc          : -4.7207441744
     f_1_step_pred_price              : 90394.2792558256
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1838 >>>>
2017-07
11:29:08
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:08
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:08 
*INFO* f_current_si         : 0.1361543100 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 7.3446077469 
*INFO* f_1_step_time        : 11:29:09
*INFO* f_1_step_si          : 0.2041642360 
     previous_pred_les_level  : -9.4995437391
     previous_pred_les_trend  : -25.1724704955
     f_1_step_pred_les_level  : -7.9376872397
     f_1_step_pred_les_trend  : -18.8225675918
     f_1_step_pred_les        : -26.7602548315
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -26.7602548315
     f_1_step_pred_price_inc          : -5.4634869828
     f_1_step_pred_price              : 90393.5365130172
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1839 >>>>
2017-07
11:29:09
90400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:09
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-07 11:29:09 
*INFO* f_current_si         : 0.2041642360 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 4.8980174961 
*INFO* f_1_step_time        : 11:29:10
*INFO* f_1_step_si          : 0.2310771670 
     previous_pred_les_level  : -7.9376872397
     previous_pred_les_trend  : -18.8225675918
     f_1_step_pred_les_level  : -6.6167362766
     f_1_step_pred_les_trend  : -14.0381050172
     f_1_step_pred_les        : -20.6548412938
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : -20.6548412938
     f_1_step_pred_price_inc          : -4.7728622110
     f_1_step_pred_price              : 90394.2271377890
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]

<<<< Record No.:  1840 >>>>
2017-07
11:29:10
90500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:10
in_current_price  : 90500.000000
*INFO* f_current_datetime   : 2017-07 11:29:10 
*INFO* f_current_si         : 0.2310771670 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 437.0834267671 
*INFO* f_1_step_time        : 11:29:11
*INFO* f_1_step_si          : 0.2910254840 
     previous_pred_les_level  : -6.6167362766
     previous_pred_les_trend  : -14.0381050172
     f_1_step_pred_les_level  : 270.5947632509
     f_1_step_pred_les_trend  : 55.1391258131
     f_1_step_pred_les        : 325.7338890640
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 325.7338890640
     f_1_step_pred_price_inc          : 94.7968627201
     f_1_step_pred_price              : 90493.7968627201
     f_1_step_pred_price_rounded      : 90500
     f_1_step_pred_set_price_rounded  : 90800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90800]
[90800]

<<<< Record No.:  1841 >>>>
2017-07
11:29:11
90500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:11
in_current_price  : 90500.000000
*INFO* f_current_datetime   : 2017-07 11:29:11 
*INFO* f_current_si         : 0.2910254840 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 347.0486454032 
*INFO* f_1_step_time        : 11:29:12
*INFO* f_1_step_si          : 0.3431273480 
     previous_pred_les_level  : 270.5947632509
     previous_pred_les_trend  : 55.1391258131
     f_1_step_pred_les_level  : 339.2960375404
     f_1_step_pred_les_trend  : 58.3603898459
     f_1_step_pred_les        : 397.6564273863
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 397.6564273863
     f_1_step_pred_price_inc          : 136.4467953442
     f_1_step_pred_price              : 90535.4467953442
     f_1_step_pred_price_rounded      : 90500
     f_1_step_pred_set_price_rounded  : 90800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90800]
[90800]

<<<< Record No.:  1842 >>>>
2017-07
11:29:12
90500
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:12
in_current_price  : 90500.000000
*INFO* f_current_datetime   : 2017-07 11:29:12 
*INFO* f_current_si         : 0.3431273480 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 294.3513555206 
*INFO* f_1_step_time        : 11:29:13
*INFO* f_1_step_si          : 0.3510740950 
     previous_pred_les_level  : 339.2960375404
     previous_pred_les_trend  : 58.3603898459
     f_1_step_pred_les_level  : 331.9254989765
     f_1_step_pred_les_trend  : 42.7480644167
     f_1_step_pred_les        : 374.6735633932
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 374.6735633932
     f_1_step_pred_price_inc          : 131.5381821887
     f_1_step_pred_price              : 90530.5381821887
     f_1_step_pred_price_rounded      : 90500
     f_1_step_pred_set_price_rounded  : 90800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90800]
[90800]

<<<< Record No.:  1843 >>>>
2017-07
11:29:13
90600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:13
in_current_price  : 90600.000000
*INFO* f_current_datetime   : 2017-07 11:29:13 
*INFO* f_current_si         : 0.3510740950 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 572.5287136324 
*INFO* f_1_step_time        : 11:29:14
*INFO* f_1_step_si          : 0.3706555480 
     previous_pred_les_level  : 331.9254989765
     previous_pred_les_trend  : 42.7480644167
     f_1_step_pred_les_level  : 500.5647948788
     f_1_step_pred_les_trend  : 72.6495875230
     f_1_step_pred_les        : 573.2143824018
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 573.2143824018
     f_1_step_pred_price_inc          : 212.4650910306
     f_1_step_pred_price              : 90611.4650910306
     f_1_step_pred_price_rounded      : 90600
     f_1_step_pred_set_price_rounded  : 90900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90900]
[90900]

<<<< Record No.:  1844 >>>>
2017-07
11:29:14
90600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:14
in_current_price  : 90600.000000
*INFO* f_current_datetime   : 2017-07 11:29:14 
*INFO* f_current_si         : 0.3706555480 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 542.2824535733 
*INFO* f_1_step_time        : 11:29:15
*INFO* f_1_step_si          : 0.4011467510 
     previous_pred_les_level  : 500.5647948788
     previous_pred_les_trend  : 72.6495875230
     f_1_step_pred_les_level  : 553.5330215288
     f_1_step_pred_les_trend  : 67.9748960455
     f_1_step_pred_les        : 621.5079175743
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 621.5079175743
     f_1_step_pred_price_inc          : 249.3158818557
     f_1_step_pred_price              : 90648.3158818557
     f_1_step_pred_price_rounded      : 90600
     f_1_step_pred_set_price_rounded  : 90900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90900]
[90900]

<<<< Record No.:  1845 >>>>
2017-07
11:29:15
90600
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:15
in_current_price  : 90600.000000
*INFO* f_current_datetime   : 2017-07 11:29:15 
*INFO* f_current_si         : 0.4011467510 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 501.0635122905 
*INFO* f_1_step_time        : 11:29:16
*INFO* f_1_step_si          : 0.4120902590 
     previous_pred_les_level  : 553.5330215288
     previous_pred_les_trend  : 67.9748960455
     f_1_step_pred_les_level  : 544.8715778662
     f_1_step_pred_les_trend  : 49.7723313751
     f_1_step_pred_les        : 594.6439092413
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 594.6439092413
     f_1_step_pred_price_inc          : 245.0469625720
     f_1_step_pred_price              : 90644.0469625720
     f_1_step_pred_price_rounded      : 90600
     f_1_step_pred_set_price_rounded  : 90900
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90900]
[90900]

<<<< Record No.:  1846 >>>>
2017-07
11:29:16
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:16
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:16 
*INFO* f_current_si         : 0.4120902590 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 730.4225067839 
*INFO* f_1_step_time        : 11:29:17
*INFO* f_1_step_si          : 0.4535685080 
     previous_pred_les_level  : 544.8715778662
     previous_pred_les_trend  : 49.7723313751
     f_1_step_pred_les_level  : 681.0370854278
     f_1_step_pred_les_trend  : 70.2923272754
     f_1_step_pred_les        : 751.3294127032
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 751.3294127032
     f_1_step_pred_price_inc          : 340.7793607363
     f_1_step_pred_price              : 90739.7793607363
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1847 >>>>
2017-07
11:29:17
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:17
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:17 
*INFO* f_current_si         : 0.4535685080 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 663.6263203705 
*INFO* f_1_step_time        : 11:29:18
*INFO* f_1_step_si          : 0.4836754840 
     previous_pred_les_level  : 681.0370854278
     previous_pred_les_trend  : 70.2923272754
     f_1_step_pred_les_level  : 695.5257083998
     f_1_step_pred_les_trend  : 57.0379033258
     f_1_step_pred_les        : 752.5636117256
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 752.5636117256
     f_1_step_pred_price_inc          : 363.9965691421
     f_1_step_pred_price              : 90762.9965691421
     f_1_step_pred_price_rounded      : 90800
     f_1_step_pred_set_price_rounded  : 91100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91100]
[91100]

<<<< Record No.:  1848 >>>>
2017-07
11:29:18
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:18
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:18 
*INFO* f_current_si         : 0.4836754840 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 622.3180830062 
*INFO* f_1_step_time        : 11:29:19
*INFO* f_1_step_si          : 0.5045423610 
     previous_pred_les_level  : 695.5257083998
     previous_pred_les_trend  : 57.0379033258
     f_1_step_pred_les_level  : 669.6910153531
     f_1_step_pred_les_trend  : 37.3541110071
     f_1_step_pred_les        : 707.0451263602
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 707.0451263602
     f_1_step_pred_price_inc          : 356.7342173873
     f_1_step_pred_price              : 90755.7342173873
     f_1_step_pred_price_rounded      : 90800
     f_1_step_pred_set_price_rounded  : 91100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91100]
[91100]

<<<< Record No.:  1849 >>>>
2017-07
11:29:19
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:19
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:19 
*INFO* f_current_si         : 0.5045423610 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 596.5802344196 
*INFO* f_1_step_time        : 11:29:20
*INFO* f_1_step_si          : 0.5273150370 
     previous_pred_les_level  : 669.6910153531
     previous_pred_les_trend  : 37.3541110071
     f_1_step_pred_les_level  : 636.7585492076
     f_1_step_pred_les_trend  : 20.6597337579
     f_1_step_pred_les        : 657.4182829655
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 657.4182829655
     f_1_step_pred_price_inc          : 346.6665462064
     f_1_step_pred_price              : 90745.6665462064
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1850 >>>>
2017-07
11:29:20
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:20
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:20 
*INFO* f_current_si         : 0.5273150370 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 570.8162651921 
*INFO* f_1_step_time        : 11:29:21
*INFO* f_1_step_si          : 0.5666965740 
     previous_pred_les_level  : 636.7585492076
     previous_pred_les_trend  : 20.6597337579
     f_1_step_pred_les_level  : 602.3151701405
     f_1_step_pred_les_trend  : 7.5717133936
     f_1_step_pred_les        : 609.8868835342
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 609.8868835342
     f_1_step_pred_price_inc          : 345.6208074263
     f_1_step_pred_price              : 90744.6208074263
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1851 >>>>
2017-07
11:29:21
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:21
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:21 
*INFO* f_current_si         : 0.5666965740 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 531.1484378234 
*INFO* f_1_step_time        : 11:29:22
*INFO* f_1_step_si          : 0.5783832890 
     previous_pred_les_level  : 602.3151701405
     previous_pred_les_trend  : 7.5717133936
     f_1_step_pred_les_level  : 559.7872026120
     f_1_step_pred_les_trend  : -4.3278982714
     f_1_step_pred_les        : 555.4593043406
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 555.4593043406
     f_1_step_pred_price_inc          : 321.2683793502
     f_1_step_pred_price              : 90720.2683793502
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1852 >>>>
2017-07
11:29:22
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:22
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:22 
*INFO* f_current_si         : 0.5783832890 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 520.4161422444 
*INFO* f_1_step_time        : 11:29:23
*INFO* f_1_step_si          : 0.5903581650 
     previous_pred_les_level  : 559.7872026120
     previous_pred_les_trend  : -4.3278982714
     f_1_step_pred_les_level  : 533.1620488681
     f_1_step_pred_les_trend  : -9.6239136638
     f_1_step_pred_les        : 523.5381352042
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 523.5381352042
     f_1_step_pred_price_inc          : 309.0750128067
     f_1_step_pred_price              : 90708.0750128067
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1853 >>>>
2017-07
11:29:23
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:23
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:23 
*INFO* f_current_si         : 0.5903581650 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 509.8599762739 
*INFO* f_1_step_time        : 11:29:24
*INFO* f_1_step_si          : 0.6203383340 
     previous_pred_les_level  : 533.1620488681
     previous_pred_les_trend  : -9.6239136638
     f_1_step_pred_les_level  : 514.8349992479
     f_1_step_pred_les_trend  : -11.6910713032
     f_1_step_pred_les        : 503.1439279447
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 503.1439279447
     f_1_step_pred_price_inc          : 312.1194660234
     f_1_step_pred_price              : 90711.1194660234
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1854 >>>>
2017-07
11:29:24
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:24
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:24 
*INFO* f_current_si         : 0.6203383340 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 485.2190869120 
*INFO* f_1_step_time        : 11:29:25
*INFO* f_1_step_si          : 0.6624022500 
     previous_pred_les_level  : 514.8349992479
     previous_pred_les_trend  : -11.6910713032
     f_1_step_pred_les_level  : 491.7387140341
     f_1_step_pred_les_trend  : -14.4000230169
     f_1_step_pred_les        : 477.3386910172
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 477.3386910172
     f_1_step_pred_price_inc          : 316.1902229418
     f_1_step_pred_price              : 90715.1902229418
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1855 >>>>
2017-07
11:29:25
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:25
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:25 
*INFO* f_current_si         : 0.6624022500 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 454.4066690595 
*INFO* f_1_step_time        : 11:29:26
*INFO* f_1_step_si          : 0.6803182270 
     previous_pred_les_level  : 491.7387140341
     previous_pred_les_trend  : -14.4000230169
     f_1_step_pred_les_level  : 462.7475091287
     f_1_step_pred_les_trend  : -17.8657017400
     f_1_step_pred_les        : 444.8818073887
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 444.8818073887
     f_1_step_pred_price_inc          : 302.6612024272
     f_1_step_pred_price              : 90701.6612024272
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1856 >>>>
2017-07
11:29:26
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:26
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:26 
*INFO* f_current_si         : 0.6803182270 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 442.4400053594 
*INFO* f_1_step_time        : 11:29:27
*INFO* f_1_step_si          : 0.7013944910 
     previous_pred_les_level  : 462.7475091287
     previous_pred_les_trend  : -17.8657017400
     f_1_step_pred_les_level  : 443.3281381305
     f_1_step_pred_les_trend  : -18.2347272605
     f_1_step_pred_les        : 425.0934108699
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 425.0934108699
     f_1_step_pred_price_inc          : 298.1581765446
     f_1_step_pred_price              : 90697.1581765446
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1857 >>>>
2017-07
11:29:27
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:27
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:27 
*INFO* f_current_si         : 0.7013944910 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 429.1450871974 
*INFO* f_1_step_time        : 11:29:28
*INFO* f_1_step_si          : 0.7261122680 
     previous_pred_les_level  : 443.3281381305
     previous_pred_les_trend  : -18.2347272605
     f_1_step_pred_les_level  : 427.6714105926
     f_1_step_pred_les_trend  : -17.6224040878
     f_1_step_pred_les        : 410.0490065048
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 410.0490065048
     f_1_step_pred_price_inc          : 297.7416141043
     f_1_step_pred_price              : 90696.7416141043
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1858 >>>>
2017-07
11:29:28
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:28
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:28 
*INFO* f_current_si         : 0.7261122680 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 414.5364474134 
*INFO* f_1_step_time        : 11:29:29
*INFO* f_1_step_si          : 0.7412284280 
     previous_pred_les_level  : 427.6714105926
     previous_pred_les_trend  : -17.6224040878
     f_1_step_pred_les_level  : 412.9042744193
     f_1_step_pred_les_trend  : -16.9442245315
     f_1_step_pred_les        : 395.9600498879
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 395.9600498879
     f_1_step_pred_price_inc          : 293.4968453292
     f_1_step_pred_price              : 90692.4968453292
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1859 >>>>
2017-07
11:29:29
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:29
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:29 
*INFO* f_current_si         : 0.7412284280 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 406.0826442021 
*INFO* f_1_step_time        : 11:29:30
*INFO* f_1_step_si          : 0.7848751150 
     previous_pred_les_level  : 412.9042744193
     previous_pred_les_trend  : -16.9442245315
     f_1_step_pred_les_level  : 402.4008519721
     f_1_step_pred_les_trend  : -15.4144135186
     f_1_step_pred_les        : 386.9864384535
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 386.9864384535
     f_1_step_pred_price_inc          : 303.7360253846
     f_1_step_pred_price              : 90702.7360253846
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1860 >>>>
2017-07
11:29:30
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:30
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:30 
*INFO* f_current_si         : 0.7848751150 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 383.5005012231 
*INFO* f_1_step_time        : 11:29:31
*INFO* f_1_step_si          : 0.7883406290 
     previous_pred_les_level  : 402.4008519721
     previous_pred_les_trend  : -15.4144135186
     f_1_step_pred_les_level  : 384.7684070791
     f_1_step_pred_les_trend  : -15.9412374730
     f_1_step_pred_les        : 368.8271696061
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 368.8271696061
     f_1_step_pred_price_inc          : 290.7614428795
     f_1_step_pred_price              : 90689.7614428795
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1861 >>>>
2017-07
11:29:31
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:31
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:31 
*INFO* f_current_si         : 0.7883406290 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 381.8146482972 
*INFO* f_1_step_time        : 11:29:32
*INFO* f_1_step_si          : 0.8143918490 
     previous_pred_les_level  : 384.7684070791
     previous_pred_les_trend  : -15.9412374730
     f_1_step_pred_les_level  : 377.0908396917
     f_1_step_pred_les_trend  : -13.9784612011
     f_1_step_pred_les        : 363.1123784906
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 363.1123784906
     f_1_step_pred_price_inc          : 295.7157613138
     f_1_step_pred_price              : 90694.7157613138
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1862 >>>>
2017-07
11:29:32
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:32
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:32 
*INFO* f_current_si         : 0.8143918490 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 369.6009486952 
*INFO* f_1_step_time        : 11:29:33
*INFO* f_1_step_si          : 0.8351005610 
     previous_pred_les_level  : 377.0908396917
     previous_pred_les_trend  : -13.9784612011
     f_1_step_pred_les_level  : 367.2409245135
     f_1_step_pred_les_trend  : -12.9978542688
     f_1_step_pred_les        : 354.2430702447
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 354.2430702447
     f_1_step_pred_price_inc          : 295.8285866917
     f_1_step_pred_price              : 90694.8285866917
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1863 >>>>
2017-07
11:29:33
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:33
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:33 
*INFO* f_current_si         : 0.8351005610 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 360.4356338111 
*INFO* f_1_step_time        : 11:29:34
*INFO* f_1_step_si          : 0.8670445380 
     previous_pred_les_level  : 367.2409245135
     previous_pred_les_trend  : -12.9978542688
     f_1_step_pred_les_level  : 358.1832732289
     f_1_step_pred_les_trend  : -12.0619823325
     f_1_step_pred_les        : 346.1212908964
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 346.1212908964
     f_1_step_pred_price_inc          : 300.1025747573
     f_1_step_pred_price              : 90699.1025747573
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1864 >>>>
2017-07
11:29:34
90700
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:34
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-07 11:29:34 
*INFO* f_current_si         : 0.8670445380 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 347.1563302784 
*INFO* f_1_step_time        : 11:29:35
*INFO* f_1_step_si          : 0.9216129500 
     previous_pred_les_level  : 358.1832732289
     previous_pred_les_trend  : -12.0619823325
     f_1_step_pred_les_level  : 346.7798655268
     f_1_step_pred_les_trend  : -11.9055585348
     f_1_step_pred_les        : 334.8743069920
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 334.8743069920
     f_1_step_pred_price_inc          : 308.6244979461
     f_1_step_pred_price              : 90707.6244979461
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]

<<<< Record No.:  1865 >>>>
2017-07
11:29:35
90800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:35
in_current_price  : 90800.000000
*INFO* f_current_datetime   : 2017-07 11:29:35 
*INFO* f_current_si         : 0.9216129500 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 435.1067332550 
*INFO* f_1_step_time        : 11:29:36
*INFO* f_1_step_si          : 0.9539289700 
     previous_pred_les_level  : 346.7798655268
     previous_pred_les_trend  : -11.9055585348
     f_1_step_pred_les_level  : 398.6501731334
     f_1_step_pred_les_trend  : 3.2424030233
     f_1_step_pred_les        : 401.8925761567
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 401.8925761567
     f_1_step_pred_price_inc          : 383.3769712238
     f_1_step_pred_price              : 90782.3769712238
     f_1_step_pred_price_rounded      : 90800
     f_1_step_pred_set_price_rounded  : 91100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91100]
[91100]

<<<< Record No.:  1866 >>>>
2017-07
11:29:36
90800
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:36
in_current_price  : 90800.000000
*INFO* f_current_datetime   : 2017-07 11:29:36 
*INFO* f_current_si         : 0.9539289700 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 420.3667281433 
*INFO* f_1_step_time        : 11:29:37
*INFO* f_1_step_si          : 0.9779660700 
     previous_pred_les_level  : 398.6501731334
     previous_pred_les_trend  : 3.2424030233
     f_1_step_pred_les_level  : 413.6473055203
     f_1_step_pred_les_trend  : 6.0343711971
     f_1_step_pred_les        : 419.6816767174
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 419.6816767174
     f_1_step_pred_price_inc          : 410.4344400303
     f_1_step_pred_price              : 90809.4344400303
     f_1_step_pred_price_rounded      : 90800
     f_1_step_pred_set_price_rounded  : 91100
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91100]
[91100]

<<<< Record No.:  1867 >>>>
2017-07
11:29:37
90900
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:37
in_current_price  : 90900.000000
*INFO* f_current_datetime   : 2017-07 11:29:37 
*INFO* f_current_si         : 0.9779660700 
*INFO* f_current_price4pm   : 501 
*INFO* f_current_price4pmsi : 512.2877115767 
*INFO* f_1_step_time        : 11:29:38
*INFO* f_1_step_si          : 0.9935136330 
     previous_pred_les_level  : 413.6473055203
     previous_pred_les_trend  : 6.0343711971
     f_1_step_pred_les_level  : 478.6050242136
     f_1_step_pred_les_trend  : 20.0297687786
     f_1_step_pred_les        : 498.6347929921
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 498.6347929921
     f_1_step_pred_price_inc          : 495.4004647258
     f_1_step_pred_price              : 90894.4004647258
     f_1_step_pred_price_rounded      : 90900
     f_1_step_pred_set_price_rounded  : 91200
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91200]
[91200]

<<<< Record No.:  1868 >>>>
2017-07
11:29:38
91000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:38
in_current_price  : 91000.000000
*INFO* f_current_datetime   : 2017-07 11:29:38 
*INFO* f_current_si         : 0.9935136330 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 604.9237574982 
*INFO* f_1_step_time        : 11:29:39
*INFO* f_1_step_si          : 1.0325517050 
     previous_pred_les_level  : 478.6050242136
     previous_pred_les_trend  : 20.0297687786
     f_1_step_pred_les_level  : 566.2643119550
     f_1_step_pred_les_trend  : 36.0930449899
     f_1_step_pred_les        : 602.3573569448
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 602.3573569448
     f_1_step_pred_price_inc          : 621.9651159327
     f_1_step_pred_price              : 91020.9651159327
     f_1_step_pred_price_rounded      : 91000
     f_1_step_pred_set_price_rounded  : 91300
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91300]
[91300]

<<<< Record No.:  1869 >>>>
2017-07
11:29:39
91000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:39
in_current_price  : 91000.000000
*INFO* f_current_datetime   : 2017-07 11:29:39 
*INFO* f_current_si         : 1.0325517050 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 582.0531766978 
*INFO* f_1_step_time        : 11:29:40
*INFO* f_1_step_si          : 1.0762695320 
     previous_pred_les_level  : 566.2643119550
     previous_pred_les_trend  : 36.0930449899
     f_1_step_pred_les_level  : 589.4382176022
     f_1_step_pred_les_trend  : 33.0245076580
     f_1_step_pred_les        : 622.4627252602
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 622.4627252602
     f_1_step_pred_price_inc          : 669.9376660032
     f_1_step_pred_price              : 91068.9376660032
     f_1_step_pred_price_rounded      : 91100
     f_1_step_pred_set_price_rounded  : 91400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91400]
[91400]

<<<< Record No.:  1870 >>>>
2017-07
11:29:40
91000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:40
in_current_price  : 91000.000000
*INFO* f_current_datetime   : 2017-07 11:29:40 
*INFO* f_current_si         : 1.0762695320 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 558.4103072055 
*INFO* f_1_step_time        : 11:29:41
*INFO* f_1_step_si          : 1.1032848210 
     previous_pred_les_level  : 589.4382176022
     previous_pred_les_trend  : 33.0245076580
     f_1_step_pred_les_level  : 581.7074667855
     f_1_step_pred_les_trend  : 23.3443711735
     f_1_step_pred_les        : 605.0518379590
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 605.0518379590
     f_1_step_pred_price_inc          : 667.5445087383
     f_1_step_pred_price              : 91066.5445087383
     f_1_step_pred_price_rounded      : 91100
     f_1_step_pred_set_price_rounded  : 91400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91400]
[91400]

<<<< Record No.:  1871 >>>>
2017-07
11:29:41
91000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:41
in_current_price  : 91000.000000
*INFO* f_current_datetime   : 2017-07 11:29:41 
*INFO* f_current_si         : 1.1032848210 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 544.7369424110 
*INFO* f_1_step_time        : 11:29:42
*INFO* f_1_step_si          : 1.1629896100 
     previous_pred_les_level  : 581.7074667855
     previous_pred_les_trend  : 23.3443711735
     f_1_step_pred_les_level  : 566.6746894830
     f_1_step_pred_les_trend  : 14.2290803120
     f_1_step_pred_les        : 580.9037697950
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 580.9037697950
     f_1_step_pred_price_inc          : 675.5850486814
     f_1_step_pred_price              : 91074.5850486814
     f_1_step_pred_price_rounded      : 91100
     f_1_step_pred_set_price_rounded  : 91400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91400]
[91400]

<<<< Record No.:  1872 >>>>
2017-07
11:29:42
91000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:42
in_current_price  : 91000.000000
*INFO* f_current_datetime   : 2017-07 11:29:42 
*INFO* f_current_si         : 1.1629896100 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 516.7715986732 
*INFO* f_1_step_time        : 11:29:43
*INFO* f_1_step_si          : 1.2717913130 
     previous_pred_les_level  : 566.6746894830
     previous_pred_les_trend  : 14.2290803120
     f_1_step_pred_les_level  : 540.0977660563
     f_1_step_pred_les_trend  : 4.5368908778
     f_1_step_pred_les        : 544.6346569341
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 544.6346569341
     f_1_step_pred_price_inc          : 692.6616254475
     f_1_step_pred_price              : 91091.6616254475
     f_1_step_pred_price_rounded      : 91100
     f_1_step_pred_set_price_rounded  : 91400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91400]
[91400]

<<<< Record No.:  1873 >>>>
2017-07
11:29:43
91000
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:43
in_current_price  : 91000.000000
*INFO* f_current_datetime   : 2017-07 11:29:43 
*INFO* f_current_si         : 1.2717913130 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 472.5618062151 
*INFO* f_1_step_time        : 11:29:44
*INFO* f_1_step_si          : 1.3866613510 
     previous_pred_les_level  : 540.0977660563
     previous_pred_les_trend  : 4.5368908778
     f_1_step_pred_les_level  : 498.7761593275
     f_1_step_pred_les_trend  : -6.3553603904
     f_1_step_pred_les        : 492.4207989371
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 492.4207989371
     f_1_step_pred_price_inc          : 682.8208903146
     f_1_step_pred_price              : 91081.8208903146
     f_1_step_pred_price_rounded      : 91100
     f_1_step_pred_set_price_rounded  : 91400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91400]
[91400]

<<<< Record No.:  1874 >>>>
2017-07
11:29:44
91100
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:44
in_current_price  : 91100.000000
*INFO* f_current_datetime   : 2017-07 11:29:44 
*INFO* f_current_si         : 1.3866613510 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 505.5307840624 
*INFO* f_1_step_time        : 11:29:45
*INFO* f_1_step_si          : 1.4370894140 
     previous_pred_les_level  : 498.7761593275
     previous_pred_les_trend  : -6.3553603904
     f_1_step_pred_les_level  : 500.7624173897
     f_1_step_pred_les_trend  : -4.3740699228
     f_1_step_pred_les        : 496.3883474669
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 496.3883474669
     f_1_step_pred_price_inc          : 713.3544393777
     f_1_step_pred_price              : 91112.3544393777
     f_1_step_pred_price_rounded      : 91100
     f_1_step_pred_set_price_rounded  : 91400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91400]
[91400]

<<<< Record No.:  1875 >>>>
2017-07
11:29:45
91100
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:45
in_current_price  : 91100.000000
*INFO* f_current_datetime   : 2017-07 11:29:45 
*INFO* f_current_si         : 1.4370894140 
*INFO* f_current_price4pm   : 701 
*INFO* f_current_price4pmsi : 487.7914993813 
*INFO* f_1_step_time        : 11:29:46
*INFO* f_1_step_si          : 1.5686206330 
     previous_pred_les_level  : 500.7624173897
     previous_pred_les_trend  : -4.3740699228
     f_1_step_pred_les_level  : 490.9183468574
     f_1_step_pred_les_trend  : -5.6732974201
     f_1_step_pred_les        : 485.2450494374
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 485.2450494374
     f_1_step_pred_price_inc          : 761.1653966086
     f_1_step_pred_price              : 91160.1653966086
     f_1_step_pred_price_rounded      : 91200
     f_1_step_pred_set_price_rounded  : 91500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91500]
[91500]

<<<< Record No.:  1876 >>>>
2017-07
11:29:46
91200
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:46
in_current_price  : 91200.000000
*INFO* f_current_datetime   : 2017-07 11:29:46 
*INFO* f_current_si         : 1.5686206330 
*INFO* f_current_price4pm   : 801 
*INFO* f_current_price4pmsi : 510.6397194764 
*INFO* f_1_step_time        : 11:29:47
*INFO* f_1_step_si          : 1.6413910300 
     previous_pred_les_level  : 490.9183468574
     previous_pred_les_trend  : -5.6732974201
     f_1_step_pred_les_level  : 501.4031645055
     f_1_step_pred_les_trend  : -1.8354427469
     f_1_step_pred_les        : 499.5677217585
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 499.5677217585
     f_1_step_pred_price_inc          : 819.9859773720
     f_1_step_pred_price              : 91218.9859773720
     f_1_step_pred_price_rounded      : 91200
     f_1_step_pred_set_price_rounded  : 91500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91500]
[91500]

<<<< Record No.:  1877 >>>>
2017-07
11:29:47
91300
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:47
in_current_price  : 91300.000000
*INFO* f_current_datetime   : 2017-07 11:29:47 
*INFO* f_current_si         : 1.6413910300 
*INFO* f_current_price4pm   : 901 
*INFO* f_current_price4pmsi : 548.9246520374 
*INFO* f_1_step_time        : 11:29:48
*INFO* f_1_step_si          : 1.7490712830 
     previous_pred_les_level  : 501.4031645055
     previous_pred_les_trend  : -1.8354427469
     f_1_step_pred_les_level  : 530.9725385027
     f_1_step_pred_les_trend  : 5.6237888647
     f_1_step_pred_les        : 536.5963273674
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 536.5963273674
     f_1_step_pred_price_inc          : 938.5452267616
     f_1_step_pred_price              : 91337.5452267616
     f_1_step_pred_price_rounded      : 91300
     f_1_step_pred_set_price_rounded  : 91600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91600]
[91600]

<<<< Record No.:  1878 >>>>
2017-07
11:29:48
91400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:48
in_current_price  : 91400.000000
*INFO* f_current_datetime   : 2017-07 11:29:48 
*INFO* f_current_si         : 1.7490712830 
*INFO* f_current_price4pm   : 1001 
*INFO* f_current_price4pmsi : 572.3037189674 
*INFO* f_1_step_time        : 11:29:49
*INFO* f_1_step_si          : 1.7897347710 
     previous_pred_les_level  : 530.9725385027
     previous_pred_les_trend  : 5.6237888647
     f_1_step_pred_les_level  : 559.3162186426
     f_1_step_pred_les_trend  : 11.0201881684
     f_1_step_pred_les        : 570.3364068110
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 570.3364068110
     f_1_step_pred_price_inc          : 1020.7508984368
     f_1_step_pred_price              : 91419.7508984368
     f_1_step_pred_price_rounded      : 91400
     f_1_step_pred_set_price_rounded  : 91700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91700]
[91700]

<<<< Record No.:  1879 >>>>
2017-07
11:29:49
91400
==>> Forecasting   1 out of next   1 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:49
in_current_price  : 91400.000000
*INFO* f_current_datetime   : 2017-07 11:29:49 
*INFO* f_current_si         : 1.7897347710 
*INFO* f_current_price4pm   : 1001 
*INFO* f_current_price4pmsi : 559.3007501557 
*INFO* f_1_step_time        : 11:29:50
*INFO* f_1_step_si          : 1.9329318490 
     previous_pred_les_level  : 559.3162186426
     previous_pred_les_trend  : 11.0201881684
     f_1_step_pred_les_level  : 563.3146416211
     f_1_step_pred_les_trend  : 9.3523875472
     f_1_step_pred_les        : 572.6670291683
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 572.6670291683
     f_1_step_pred_price_inc          : 1106.9263395517
     f_1_step_pred_price              : 91505.9263395517
     f_1_step_pred_price_rounded      : 91500
     f_1_step_pred_set_price_rounded  : 91800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91800]
[91800]

In [6]:
# Upon receiving 11:29:50 second price, to predict till 11:30:00 <- ten-step forward price forecasting

for i in range(shl_sm_parm_ccyy_mm_offset+50, shl_sm_parm_ccyy_mm_offset+51): # use csv data as simulation
    print('\n<<<< Record No.: %5d >>>>' % i)
    print(shl_sm_data['ccyy-mm'][i]) # format: ccyy-mm
    print(shl_sm_data['time'][i]) # format: hh:mm:ss
    print(shl_sm_data['bid-price'][i]) # format: integer/boost-trap-float
    
######################################################################################################################    
#   call prediction function, returned result is in 'list' format, i.e. [89400, 89400, 89400, 89500, 89500, 89500, 89500, 89600, 89600, 89600]  
    shl_sm_prediction_list_local_k = shl_pm.shl_predict_price_k_step(shl_sm_data['time'][i], shl_sm_data['bid-price'][i],10) # <- ten-step forward price forecasting
    print(shl_sm_prediction_list_local_k)
######################################################################################################################


<<<< Record No.:  1880 >>>>
2017-07
11:29:50
91500
==>> Forecasting   1 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:50
in_current_price  : 91500.000000
*INFO* f_current_datetime   : 2017-07 11:29:50 
*INFO* f_current_si         : 1.9329318490 
*INFO* f_current_price4pm   : 1101 
*INFO* f_current_price4pmsi : 569.6010444288 
*INFO* f_1_step_time        : 11:29:51
*INFO* f_1_step_si          : 2.0011852710 
*INFO* sec50_error          : 5.9263395517
*INFO* sec46_49_error       : -163.5525008210
*INFO* shl_global_parm_short_weight_misc  : -31.5252322539
*INFO* shl_global_parm_short_weight_ratio : 1
     previous_pred_les_level  : 563.3146416211
     previous_pred_les_trend  : 9.3523875472
     f_1_step_pred_les_level  : 570.7162050725
     f_1_step_pred_les_trend  : 8.8890303214
     f_1_step_pred_les        : 579.6052353939
     f_1_step_pred_adj_misc   : -0.8809825102
     pred_les + pred_adj_misc : 578.7242528837
     f_1_step_pred_price_inc          : 1158.1344508413
     f_1_step_pred_price              : 91557.1344508413
     f_1_step_pred_price_rounded      : 91600
     f_1_step_pred_set_price_rounded  : 91900
-------------------------------------------------
==>> Forecasting   2 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:51
in_current_price  : 91557.134451
*INFO* f_current_datetime   : 2017-07 11:29:51 
*INFO* f_current_si         : 2.0011852710 
*INFO* f_current_price4pm   : 1158 
*INFO* f_current_price4pmsi : 578.7242528837 
*INFO* f_1_step_time        : 11:29:52
*INFO* f_1_step_si          : 2.0661036070 
*INFO* shl_global_parm_short_weight_ratio : 2
     previous_pred_les_level  : 570.7162050725
     previous_pred_les_trend  : 8.8890303214
     f_1_step_pred_les_level  : 579.0446840360
     f_1_step_pred_les_trend  : 8.7558888851
     f_1_step_pred_les        : 587.8005729211
     f_1_step_pred_adj_misc   : -1.7619650204
     pred_les + pred_adj_misc : 586.0386079007
     f_1_step_pred_price_inc          : 1210.8164816249
     f_1_step_pred_price              : 91609.8164816249
     f_1_step_pred_price_rounded      : 91600
     f_1_step_pred_set_price_rounded  : 91900
-------------------------------------------------
==>> Forecasting   3 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:52
in_current_price  : 91609.816482
*INFO* f_current_datetime   : 2017-07 11:29:52 
*INFO* f_current_si         : 2.0661036070 
*INFO* f_current_price4pm   : 1210 
*INFO* f_current_price4pmsi : 586.0386079007 
*INFO* f_1_step_time        : 11:29:53
*INFO* f_1_step_si          : 2.1682095660 
*INFO* shl_global_parm_short_weight_ratio : 3
     previous_pred_les_level  : 579.0446840360
     previous_pred_les_trend  : 8.7558888851
     f_1_step_pred_les_level  : 586.6794702054
     f_1_step_pred_les_trend  : 8.4896060125
     f_1_step_pred_les        : 595.1690762179
     f_1_step_pred_adj_misc   : -2.6429475306
     pred_les + pred_adj_misc : 592.5261286873
     f_1_step_pred_price_inc          : 1284.7208203248
     f_1_step_pred_price              : 91683.7208203248
     f_1_step_pred_price_rounded      : 91700
     f_1_step_pred_set_price_rounded  : 92000
-------------------------------------------------
==>> Forecasting   4 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:53
in_current_price  : 91683.720820
*INFO* f_current_datetime   : 2017-07 11:29:53 
*INFO* f_current_si         : 2.1682095660 
*INFO* f_current_price4pm   : 1284 
*INFO* f_current_price4pmsi : 592.5261286873 
*INFO* f_1_step_time        : 11:29:54
*INFO* f_1_step_si          : 2.2903489060 
*INFO* shl_global_parm_short_weight_ratio : 4
     previous_pred_les_level  : 586.6794702054
     previous_pred_les_trend  : 8.4896060125
     f_1_step_pred_les_level  : 593.4874221443
     f_1_step_pred_les_trend  : 8.0901817035
     f_1_step_pred_les        : 601.5776038478
     f_1_step_pred_adj_misc   : -3.5239300407
     pred_les + pred_adj_misc : 598.0536738071
     f_1_step_pred_price_inc          : 1369.7515775334
     f_1_step_pred_price              : 91768.7515775334
     f_1_step_pred_price_rounded      : 91800
     f_1_step_pred_set_price_rounded  : 92100
-------------------------------------------------
==>> Forecasting   5 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:54
in_current_price  : 91768.751578
*INFO* f_current_datetime   : 2017-07 11:29:54 
*INFO* f_current_si         : 2.2903489060 
*INFO* f_current_price4pm   : 1369 
*INFO* f_current_price4pmsi : 598.0536738071 
*INFO* f_1_step_time        : 11:29:55
*INFO* f_1_step_si          : 2.4136021070 
*INFO* shl_global_parm_short_weight_ratio : 5
     previous_pred_les_level  : 593.4874221443
     previous_pred_les_trend  : 8.0901817035
     f_1_step_pred_les_level  : 599.3353984164
     f_1_step_pred_les_trend  : 7.5576159583
     f_1_step_pred_les        : 606.8930143747
     f_1_step_pred_adj_misc   : -4.4049125509
     pred_les + pred_adj_misc : 602.4881018238
     f_1_step_pred_price_inc          : 1454.1665520044
     f_1_step_pred_price              : 91853.1665520044
     f_1_step_pred_price_rounded      : 91900
     f_1_step_pred_set_price_rounded  : 92200
-------------------------------------------------
==>> Forecasting   6 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:55
in_current_price  : 91853.166552
*INFO* f_current_datetime   : 2017-07 11:29:55 
*INFO* f_current_si         : 2.4136021070 
*INFO* f_current_price4pm   : 1454 
*INFO* f_current_price4pmsi : 602.4881018238 
*INFO* f_1_step_time        : 11:29:56
*INFO* f_1_step_si          : 2.5506970550 
*INFO* shl_global_parm_short_weight_ratio : 6
     previous_pred_les_level  : 599.3353984164
     previous_pred_les_trend  : 7.5576159583
     f_1_step_pred_les_level  : 604.0902575855
     f_1_step_pred_les_trend  : 6.8919087767
     f_1_step_pred_les        : 610.9821663622
     f_1_step_pred_adj_misc   : -5.2858950611
     pred_les + pred_adj_misc : 605.6962713011
     f_1_step_pred_price_inc          : 1544.9476954322
     f_1_step_pred_price              : 91943.9476954322
     f_1_step_pred_price_rounded      : 91900
     f_1_step_pred_set_price_rounded  : 92200
-------------------------------------------------
==>> Forecasting   7 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:56
in_current_price  : 91943.947695
*INFO* f_current_datetime   : 2017-07 11:29:56 
*INFO* f_current_si         : 2.5506970550 
*INFO* f_current_price4pm   : 1544 
*INFO* f_current_price4pmsi : 605.6962713011 
*INFO* f_1_step_time        : 11:29:57
*INFO* f_1_step_si          : 2.7053908880 
*INFO* shl_global_parm_short_weight_ratio : 7
     previous_pred_les_level  : 604.0902575855
     previous_pred_les_trend  : 6.8919087767
     f_1_step_pred_les_level  : 607.6188582151
     f_1_step_pred_les_trend  : 6.0930601589
     f_1_step_pred_les        : 613.7119183739
     f_1_step_pred_adj_misc   : -6.1668775713
     pred_les + pred_adj_misc : 607.5450408027
     f_1_step_pred_price_inc          : 1643.6468174371
     f_1_step_pred_price              : 92042.6468174371
     f_1_step_pred_price_rounded      : 92000
     f_1_step_pred_set_price_rounded  : 92300
-------------------------------------------------
==>> Forecasting   8 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:57
in_current_price  : 92042.646817
*INFO* f_current_datetime   : 2017-07 11:29:57 
*INFO* f_current_si         : 2.7053908880 
*INFO* f_current_price4pm   : 1643 
*INFO* f_current_price4pmsi : 607.5450408027 
*INFO* f_1_step_time        : 11:29:58
*INFO* f_1_step_si          : 2.7745487590 
*INFO* shl_global_parm_short_weight_ratio : 8
     previous_pred_les_level  : 607.6188582151
     previous_pred_les_trend  : 6.0930601589
     f_1_step_pred_les_level  : 609.7880588690
     f_1_step_pred_les_trend  : 5.1610701047
     f_1_step_pred_les        : 614.9491289737
     f_1_step_pred_adj_misc   : -7.0478600815
     pred_les + pred_adj_misc : 607.9012688922
     f_1_step_pred_price_inc          : 1686.6517111994
     f_1_step_pred_price              : 92085.6517111994
     f_1_step_pred_price_rounded      : 92100
     f_1_step_pred_set_price_rounded  : 92400
-------------------------------------------------
==>> Forecasting   9 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:58
in_current_price  : 92085.651711
*INFO* f_current_datetime   : 2017-07 11:29:58 
*INFO* f_current_si         : 2.7745487590 
*INFO* f_current_price4pm   : 1686 
*INFO* f_current_price4pmsi : 607.9012688922 
*INFO* f_1_step_time        : 11:29:59
*INFO* f_1_step_si          : 2.9291830210 
*INFO* shl_global_parm_short_weight_ratio : 9
     previous_pred_les_level  : 609.7880588690
     previous_pred_les_trend  : 5.1610701047
     f_1_step_pred_les_level  : 610.4647181109
     f_1_step_pred_les_trend  : 4.0959386142
     f_1_step_pred_les        : 614.5606567251
     f_1_step_pred_adj_misc   : -7.9288425917
     pred_les + pred_adj_misc : 606.6318141334
     f_1_step_pred_price_inc          : 1776.9356099580
     f_1_step_pred_price              : 92175.9356099580
     f_1_step_pred_price_rounded      : 92200
     f_1_step_pred_set_price_rounded  : 92500
-------------------------------------------------
==>> Forecasting  10 out of next  10 seconds/steps... 

+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-07
in_current_time   : 11:29:59
in_current_price  : 92175.935610
*INFO* f_current_datetime   : 2017-07 11:29:59 
*INFO* f_current_si         : 2.9291830210 
*INFO* f_current_price4pm   : 1776 
*INFO* f_current_price4pmsi : 606.6318141334 
*INFO* f_1_step_time        : 11:30:00
*INFO* f_1_step_si          : 3.0710424510 
*INFO* shl_global_parm_short_weight_ratio : 10
     previous_pred_les_level  : 610.4647181109
     previous_pred_les_trend  : 4.0959386142
     f_1_step_pred_les_level  : 609.5156945044
     f_1_step_pred_les_trend  : 2.8976656874
     f_1_step_pred_les        : 612.4133601918
     f_1_step_pred_adj_misc   : -8.8098251018
     pred_les + pred_adj_misc : 603.6035350899
     f_1_step_pred_price_inc          : 1853.6920798349
     f_1_step_pred_price              : 92252.6920798349
     f_1_step_pred_price_rounded      : 92300
     f_1_step_pred_set_price_rounded  : 92600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91900, 91900, 92000, 92100, 92200, 92200, 92300, 92400, 92500, 92600]
[91900, 91900, 92000, 92100, 92200, 92200, 92300, 92400, 92500, 92600]

In [7]:
shl_pm.shl_data_pm_1_step


Out[7]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
0 2017-07 0.000000 422.483383 422.483383 0.000000 90408.458677 9.458677 90400.0 90700.0 0.022388 11:29:01 90400.0 2017-07 11:29:00 1.0 422.483383 0.002367
1 2017-07 0.000000 124.987080 182.085965 -57.098885 90402.863447 3.863447 90400.0 90700.0 0.030911 11:29:02 90400.0 2017-07 11:29:01 1.0 44.666225 0.022388
2 2017-07 0.000000 -5.054063 66.044732 -71.098795 90398.809110 -0.190890 90400.0 90700.0 0.037770 11:29:03 90400.0 2017-07 11:29:02 1.0 32.351184 0.030911
3 2017-07 0.000000 -51.325580 15.008081 -66.333661 90396.654153 -2.345847 90400.0 90700.0 0.045705 11:29:04 90400.0 2017-07 11:29:03 1.0 26.476318 0.037770
4 2017-07 0.000000 -60.017096 -4.746773 -55.270323 90396.282431 -2.717569 90400.0 90700.0 0.045280 11:29:05 90400.0 2017-07 11:29:04 1.0 21.879334 0.045705
5 2017-07 0.000000 -50.639678 -7.777287 -42.862391 90394.910559 -4.089441 90400.0 90700.0 0.080756 11:29:06 90400.0 2017-07 11:29:05 1.0 22.084851 0.045280
6 2017-07 0.000000 -43.877474 -10.539602 -33.337872 90394.677994 -4.322006 90400.0 90700.0 0.098502 11:29:07 90400.0 2017-07 11:29:06 1.0 12.383032 0.080756
7 2017-07 0.000000 -34.672014 -9.499544 -25.172470 90394.279256 -4.720744 90400.0 90700.0 0.136154 11:29:08 90400.0 2017-07 11:29:07 1.0 10.152108 0.098502
8 2017-07 0.000000 -26.760255 -7.937687 -18.822568 90393.536513 -5.463487 90400.0 90700.0 0.204164 11:29:09 90400.0 2017-07 11:29:08 1.0 7.344608 0.136154
9 2017-07 0.000000 -20.654841 -6.616736 -14.038105 90394.227138 -4.772862 90400.0 90700.0 0.231077 11:29:10 90400.0 2017-07 11:29:09 1.0 4.898017 0.204164
10 2017-07 0.000000 325.733889 270.594763 55.139126 90493.796863 94.796863 90500.0 90800.0 0.291025 11:29:11 90500.0 2017-07 11:29:10 101.0 437.083427 0.231077
11 2017-07 0.000000 397.656427 339.296038 58.360390 90535.446795 136.446795 90500.0 90800.0 0.343127 11:29:12 90500.0 2017-07 11:29:11 101.0 347.048645 0.291025
12 2017-07 0.000000 374.673563 331.925499 42.748064 90530.538182 131.538182 90500.0 90800.0 0.351074 11:29:13 90500.0 2017-07 11:29:12 101.0 294.351356 0.343127
13 2017-07 0.000000 573.214382 500.564795 72.649588 90611.465091 212.465091 90600.0 90900.0 0.370656 11:29:14 90600.0 2017-07 11:29:13 201.0 572.528714 0.351074
14 2017-07 0.000000 621.507918 553.533022 67.974896 90648.315882 249.315882 90600.0 90900.0 0.401147 11:29:15 90600.0 2017-07 11:29:14 201.0 542.282454 0.370656
15 2017-07 0.000000 594.643909 544.871578 49.772331 90644.046963 245.046963 90600.0 90900.0 0.412090 11:29:16 90600.0 2017-07 11:29:15 201.0 501.063512 0.401147
16 2017-07 0.000000 751.329413 681.037085 70.292327 90739.779361 340.779361 90700.0 91000.0 0.453569 11:29:17 90700.0 2017-07 11:29:16 301.0 730.422507 0.412090
17 2017-07 0.000000 752.563612 695.525708 57.037903 90762.996569 363.996569 90800.0 91100.0 0.483675 11:29:18 90700.0 2017-07 11:29:17 301.0 663.626320 0.453569
18 2017-07 0.000000 707.045126 669.691015 37.354111 90755.734217 356.734217 90800.0 91100.0 0.504542 11:29:19 90700.0 2017-07 11:29:18 301.0 622.318083 0.483675
19 2017-07 0.000000 657.418283 636.758549 20.659734 90745.666546 346.666546 90700.0 91000.0 0.527315 11:29:20 90700.0 2017-07 11:29:19 301.0 596.580234 0.504542
20 2017-07 0.000000 609.886884 602.315170 7.571713 90744.620807 345.620807 90700.0 91000.0 0.566697 11:29:21 90700.0 2017-07 11:29:20 301.0 570.816265 0.527315
21 2017-07 0.000000 555.459304 559.787203 -4.327898 90720.268379 321.268379 90700.0 91000.0 0.578383 11:29:22 90700.0 2017-07 11:29:21 301.0 531.148438 0.566697
22 2017-07 0.000000 523.538135 533.162049 -9.623914 90708.075013 309.075013 90700.0 91000.0 0.590358 11:29:23 90700.0 2017-07 11:29:22 301.0 520.416142 0.578383
23 2017-07 0.000000 503.143928 514.834999 -11.691071 90711.119466 312.119466 90700.0 91000.0 0.620338 11:29:24 90700.0 2017-07 11:29:23 301.0 509.859976 0.590358
24 2017-07 0.000000 477.338691 491.738714 -14.400023 90715.190223 316.190223 90700.0 91000.0 0.662402 11:29:25 90700.0 2017-07 11:29:24 301.0 485.219087 0.620338
25 2017-07 0.000000 444.881807 462.747509 -17.865702 90701.661202 302.661202 90700.0 91000.0 0.680318 11:29:26 90700.0 2017-07 11:29:25 301.0 454.406669 0.662402
26 2017-07 0.000000 425.093411 443.328138 -18.234727 90697.158177 298.158177 90700.0 91000.0 0.701394 11:29:27 90700.0 2017-07 11:29:26 301.0 442.440005 0.680318
27 2017-07 0.000000 410.049007 427.671411 -17.622404 90696.741614 297.741614 90700.0 91000.0 0.726112 11:29:28 90700.0 2017-07 11:29:27 301.0 429.145087 0.701394
28 2017-07 0.000000 395.960050 412.904274 -16.944225 90692.496845 293.496845 90700.0 91000.0 0.741228 11:29:29 90700.0 2017-07 11:29:28 301.0 414.536447 0.726112
29 2017-07 0.000000 386.986438 402.400852 -15.414414 90702.736025 303.736025 90700.0 91000.0 0.784875 11:29:30 90700.0 2017-07 11:29:29 301.0 406.082644 0.741228
30 2017-07 0.000000 368.827170 384.768407 -15.941237 90689.761443 290.761443 90700.0 91000.0 0.788341 11:29:31 90700.0 2017-07 11:29:30 301.0 383.500501 0.784875
31 2017-07 0.000000 363.112378 377.090840 -13.978461 90694.715761 295.715761 90700.0 91000.0 0.814392 11:29:32 90700.0 2017-07 11:29:31 301.0 381.814648 0.788341
32 2017-07 0.000000 354.243070 367.240925 -12.997854 90694.828587 295.828587 90700.0 91000.0 0.835101 11:29:33 90700.0 2017-07 11:29:32 301.0 369.600949 0.814392
33 2017-07 0.000000 346.121291 358.183273 -12.061982 90699.102575 300.102575 90700.0 91000.0 0.867045 11:29:34 90700.0 2017-07 11:29:33 301.0 360.435634 0.835101
34 2017-07 0.000000 334.874307 346.779866 -11.905559 90707.624498 308.624498 90700.0 91000.0 0.921613 11:29:35 90700.0 2017-07 11:29:34 301.0 347.156330 0.867045
35 2017-07 0.000000 401.892576 398.650173 3.242403 90782.376971 383.376971 90800.0 91100.0 0.953929 11:29:36 90800.0 2017-07 11:29:35 401.0 435.106733 0.921613
36 2017-07 0.000000 419.681677 413.647306 6.034371 90809.434440 410.434440 90800.0 91100.0 0.977966 11:29:37 90800.0 2017-07 11:29:36 401.0 420.366728 0.953929
37 2017-07 0.000000 498.634793 478.605024 20.029769 90894.400465 495.400465 90900.0 91200.0 0.993514 11:29:38 90900.0 2017-07 11:29:37 501.0 512.287712 0.977966
38 2017-07 0.000000 602.357357 566.264312 36.093045 91020.965116 621.965116 91000.0 91300.0 1.032552 11:29:39 91000.0 2017-07 11:29:38 601.0 604.923757 0.993514
39 2017-07 0.000000 622.462725 589.438218 33.024508 91068.937666 669.937666 91100.0 91400.0 1.076270 11:29:40 91000.0 2017-07 11:29:39 601.0 582.053177 1.032552
40 2017-07 0.000000 605.051838 581.707467 23.344371 91066.544509 667.544509 91100.0 91400.0 1.103285 11:29:41 91000.0 2017-07 11:29:40 601.0 558.410307 1.076270
41 2017-07 0.000000 580.903770 566.674689 14.229080 91074.585049 675.585049 91100.0 91400.0 1.162990 11:29:42 91000.0 2017-07 11:29:41 601.0 544.736942 1.103285
42 2017-07 0.000000 544.634657 540.097766 4.536891 91091.661625 692.661625 91100.0 91400.0 1.271791 11:29:43 91000.0 2017-07 11:29:42 601.0 516.771599 1.162990
43 2017-07 0.000000 492.420799 498.776159 -6.355360 91081.820890 682.820890 91100.0 91400.0 1.386661 11:29:44 91000.0 2017-07 11:29:43 601.0 472.561806 1.271791
44 2017-07 0.000000 496.388347 500.762417 -4.374070 91112.354439 713.354439 91100.0 91400.0 1.437089 11:29:45 91100.0 2017-07 11:29:44 701.0 505.530784 1.386661
45 2017-07 0.000000 485.245049 490.918347 -5.673297 91160.165397 761.165397 91200.0 91500.0 1.568621 11:29:46 91100.0 2017-07 11:29:45 701.0 487.791499 1.437089
46 2017-07 0.000000 499.567722 501.403165 -1.835443 91218.985977 819.985977 91200.0 91500.0 1.641391 11:29:47 91200.0 2017-07 11:29:46 801.0 510.639719 1.568621
47 2017-07 0.000000 536.596327 530.972539 5.623789 91337.545227 938.545227 91300.0 91600.0 1.749071 11:29:48 91300.0 2017-07 11:29:47 901.0 548.924652 1.641391
48 2017-07 0.000000 570.336407 559.316219 11.020188 91419.750898 1020.750898 91400.0 91700.0 1.789735 11:29:49 91400.0 2017-07 11:29:48 1001.0 572.303719 1.749071
49 2017-07 0.000000 572.667029 563.314642 9.352388 91505.926340 1106.926340 91500.0 91800.0 1.932932 11:29:50 91400.0 2017-07 11:29:49 1001.0 559.300750 1.789735
50 2017-07 -0.880983 579.605235 570.716205 8.889030 91557.134451 1158.134451 91600.0 91900.0 2.001185 11:29:51 91500.0 2017-07 11:29:50 1101.0 569.601044 1.932932

In [8]:
shl_pm.shl_data_pm_k_step


Out[8]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
0 2017-07 0.000000 422.483383 422.483383 0.000000 90408.458677 9.458677 90400.0 90700.0 0.022388 11:29:01 90400.000000 2017-07 11:29:00 1.000000 422.483383 0.002367
1 2017-07 0.000000 124.987080 182.085965 -57.098885 90402.863447 3.863447 90400.0 90700.0 0.030911 11:29:02 90400.000000 2017-07 11:29:01 1.000000 44.666225 0.022388
2 2017-07 0.000000 -5.054063 66.044732 -71.098795 90398.809110 -0.190890 90400.0 90700.0 0.037770 11:29:03 90400.000000 2017-07 11:29:02 1.000000 32.351184 0.030911
3 2017-07 0.000000 -51.325580 15.008081 -66.333661 90396.654153 -2.345847 90400.0 90700.0 0.045705 11:29:04 90400.000000 2017-07 11:29:03 1.000000 26.476318 0.037770
4 2017-07 0.000000 -60.017096 -4.746773 -55.270323 90396.282431 -2.717569 90400.0 90700.0 0.045280 11:29:05 90400.000000 2017-07 11:29:04 1.000000 21.879334 0.045705
5 2017-07 0.000000 -50.639678 -7.777287 -42.862391 90394.910559 -4.089441 90400.0 90700.0 0.080756 11:29:06 90400.000000 2017-07 11:29:05 1.000000 22.084851 0.045280
6 2017-07 0.000000 -43.877474 -10.539602 -33.337872 90394.677994 -4.322006 90400.0 90700.0 0.098502 11:29:07 90400.000000 2017-07 11:29:06 1.000000 12.383032 0.080756
7 2017-07 0.000000 -34.672014 -9.499544 -25.172470 90394.279256 -4.720744 90400.0 90700.0 0.136154 11:29:08 90400.000000 2017-07 11:29:07 1.000000 10.152108 0.098502
8 2017-07 0.000000 -26.760255 -7.937687 -18.822568 90393.536513 -5.463487 90400.0 90700.0 0.204164 11:29:09 90400.000000 2017-07 11:29:08 1.000000 7.344608 0.136154
9 2017-07 0.000000 -20.654841 -6.616736 -14.038105 90394.227138 -4.772862 90400.0 90700.0 0.231077 11:29:10 90400.000000 2017-07 11:29:09 1.000000 4.898017 0.204164
10 2017-07 0.000000 325.733889 270.594763 55.139126 90493.796863 94.796863 90500.0 90800.0 0.291025 11:29:11 90500.000000 2017-07 11:29:10 101.000000 437.083427 0.231077
11 2017-07 0.000000 397.656427 339.296038 58.360390 90535.446795 136.446795 90500.0 90800.0 0.343127 11:29:12 90500.000000 2017-07 11:29:11 101.000000 347.048645 0.291025
12 2017-07 0.000000 374.673563 331.925499 42.748064 90530.538182 131.538182 90500.0 90800.0 0.351074 11:29:13 90500.000000 2017-07 11:29:12 101.000000 294.351356 0.343127
13 2017-07 0.000000 573.214382 500.564795 72.649588 90611.465091 212.465091 90600.0 90900.0 0.370656 11:29:14 90600.000000 2017-07 11:29:13 201.000000 572.528714 0.351074
14 2017-07 0.000000 621.507918 553.533022 67.974896 90648.315882 249.315882 90600.0 90900.0 0.401147 11:29:15 90600.000000 2017-07 11:29:14 201.000000 542.282454 0.370656
15 2017-07 0.000000 594.643909 544.871578 49.772331 90644.046963 245.046963 90600.0 90900.0 0.412090 11:29:16 90600.000000 2017-07 11:29:15 201.000000 501.063512 0.401147
16 2017-07 0.000000 751.329413 681.037085 70.292327 90739.779361 340.779361 90700.0 91000.0 0.453569 11:29:17 90700.000000 2017-07 11:29:16 301.000000 730.422507 0.412090
17 2017-07 0.000000 752.563612 695.525708 57.037903 90762.996569 363.996569 90800.0 91100.0 0.483675 11:29:18 90700.000000 2017-07 11:29:17 301.000000 663.626320 0.453569
18 2017-07 0.000000 707.045126 669.691015 37.354111 90755.734217 356.734217 90800.0 91100.0 0.504542 11:29:19 90700.000000 2017-07 11:29:18 301.000000 622.318083 0.483675
19 2017-07 0.000000 657.418283 636.758549 20.659734 90745.666546 346.666546 90700.0 91000.0 0.527315 11:29:20 90700.000000 2017-07 11:29:19 301.000000 596.580234 0.504542
20 2017-07 0.000000 609.886884 602.315170 7.571713 90744.620807 345.620807 90700.0 91000.0 0.566697 11:29:21 90700.000000 2017-07 11:29:20 301.000000 570.816265 0.527315
21 2017-07 0.000000 555.459304 559.787203 -4.327898 90720.268379 321.268379 90700.0 91000.0 0.578383 11:29:22 90700.000000 2017-07 11:29:21 301.000000 531.148438 0.566697
22 2017-07 0.000000 523.538135 533.162049 -9.623914 90708.075013 309.075013 90700.0 91000.0 0.590358 11:29:23 90700.000000 2017-07 11:29:22 301.000000 520.416142 0.578383
23 2017-07 0.000000 503.143928 514.834999 -11.691071 90711.119466 312.119466 90700.0 91000.0 0.620338 11:29:24 90700.000000 2017-07 11:29:23 301.000000 509.859976 0.590358
24 2017-07 0.000000 477.338691 491.738714 -14.400023 90715.190223 316.190223 90700.0 91000.0 0.662402 11:29:25 90700.000000 2017-07 11:29:24 301.000000 485.219087 0.620338
25 2017-07 0.000000 444.881807 462.747509 -17.865702 90701.661202 302.661202 90700.0 91000.0 0.680318 11:29:26 90700.000000 2017-07 11:29:25 301.000000 454.406669 0.662402
26 2017-07 0.000000 425.093411 443.328138 -18.234727 90697.158177 298.158177 90700.0 91000.0 0.701394 11:29:27 90700.000000 2017-07 11:29:26 301.000000 442.440005 0.680318
27 2017-07 0.000000 410.049007 427.671411 -17.622404 90696.741614 297.741614 90700.0 91000.0 0.726112 11:29:28 90700.000000 2017-07 11:29:27 301.000000 429.145087 0.701394
28 2017-07 0.000000 395.960050 412.904274 -16.944225 90692.496845 293.496845 90700.0 91000.0 0.741228 11:29:29 90700.000000 2017-07 11:29:28 301.000000 414.536447 0.726112
29 2017-07 0.000000 386.986438 402.400852 -15.414414 90702.736025 303.736025 90700.0 91000.0 0.784875 11:29:30 90700.000000 2017-07 11:29:29 301.000000 406.082644 0.741228
30 2017-07 0.000000 368.827170 384.768407 -15.941237 90689.761443 290.761443 90700.0 91000.0 0.788341 11:29:31 90700.000000 2017-07 11:29:30 301.000000 383.500501 0.784875
31 2017-07 0.000000 363.112378 377.090840 -13.978461 90694.715761 295.715761 90700.0 91000.0 0.814392 11:29:32 90700.000000 2017-07 11:29:31 301.000000 381.814648 0.788341
32 2017-07 0.000000 354.243070 367.240925 -12.997854 90694.828587 295.828587 90700.0 91000.0 0.835101 11:29:33 90700.000000 2017-07 11:29:32 301.000000 369.600949 0.814392
33 2017-07 0.000000 346.121291 358.183273 -12.061982 90699.102575 300.102575 90700.0 91000.0 0.867045 11:29:34 90700.000000 2017-07 11:29:33 301.000000 360.435634 0.835101
34 2017-07 0.000000 334.874307 346.779866 -11.905559 90707.624498 308.624498 90700.0 91000.0 0.921613 11:29:35 90700.000000 2017-07 11:29:34 301.000000 347.156330 0.867045
35 2017-07 0.000000 401.892576 398.650173 3.242403 90782.376971 383.376971 90800.0 91100.0 0.953929 11:29:36 90800.000000 2017-07 11:29:35 401.000000 435.106733 0.921613
36 2017-07 0.000000 419.681677 413.647306 6.034371 90809.434440 410.434440 90800.0 91100.0 0.977966 11:29:37 90800.000000 2017-07 11:29:36 401.000000 420.366728 0.953929
37 2017-07 0.000000 498.634793 478.605024 20.029769 90894.400465 495.400465 90900.0 91200.0 0.993514 11:29:38 90900.000000 2017-07 11:29:37 501.000000 512.287712 0.977966
38 2017-07 0.000000 602.357357 566.264312 36.093045 91020.965116 621.965116 91000.0 91300.0 1.032552 11:29:39 91000.000000 2017-07 11:29:38 601.000000 604.923757 0.993514
39 2017-07 0.000000 622.462725 589.438218 33.024508 91068.937666 669.937666 91100.0 91400.0 1.076270 11:29:40 91000.000000 2017-07 11:29:39 601.000000 582.053177 1.032552
40 2017-07 0.000000 605.051838 581.707467 23.344371 91066.544509 667.544509 91100.0 91400.0 1.103285 11:29:41 91000.000000 2017-07 11:29:40 601.000000 558.410307 1.076270
41 2017-07 0.000000 580.903770 566.674689 14.229080 91074.585049 675.585049 91100.0 91400.0 1.162990 11:29:42 91000.000000 2017-07 11:29:41 601.000000 544.736942 1.103285
42 2017-07 0.000000 544.634657 540.097766 4.536891 91091.661625 692.661625 91100.0 91400.0 1.271791 11:29:43 91000.000000 2017-07 11:29:42 601.000000 516.771599 1.162990
43 2017-07 0.000000 492.420799 498.776159 -6.355360 91081.820890 682.820890 91100.0 91400.0 1.386661 11:29:44 91000.000000 2017-07 11:29:43 601.000000 472.561806 1.271791
44 2017-07 0.000000 496.388347 500.762417 -4.374070 91112.354439 713.354439 91100.0 91400.0 1.437089 11:29:45 91100.000000 2017-07 11:29:44 701.000000 505.530784 1.386661
45 2017-07 0.000000 485.245049 490.918347 -5.673297 91160.165397 761.165397 91200.0 91500.0 1.568621 11:29:46 91100.000000 2017-07 11:29:45 701.000000 487.791499 1.437089
46 2017-07 0.000000 499.567722 501.403165 -1.835443 91218.985977 819.985977 91200.0 91500.0 1.641391 11:29:47 91200.000000 2017-07 11:29:46 801.000000 510.639719 1.568621
47 2017-07 0.000000 536.596327 530.972539 5.623789 91337.545227 938.545227 91300.0 91600.0 1.749071 11:29:48 91300.000000 2017-07 11:29:47 901.000000 548.924652 1.641391
48 2017-07 0.000000 570.336407 559.316219 11.020188 91419.750898 1020.750898 91400.0 91700.0 1.789735 11:29:49 91400.000000 2017-07 11:29:48 1001.000000 572.303719 1.749071
49 2017-07 0.000000 572.667029 563.314642 9.352388 91505.926340 1106.926340 91500.0 91800.0 1.932932 11:29:50 91400.000000 2017-07 11:29:49 1001.000000 559.300750 1.789735
50 2017-07 -0.880983 579.605235 570.716205 8.889030 91557.134451 1158.134451 91600.0 91900.0 2.001185 11:29:51 91500.000000 2017-07 11:29:50 1101.000000 569.601044 1.932932
51 2017-07 -1.761965 587.800573 579.044684 8.755889 91609.816482 1210.816482 91600.0 91900.0 2.066104 11:29:52 91557.134451 2017-07 11:29:51 1158.134451 578.724253 2.001185
52 2017-07 -2.642948 595.169076 586.679470 8.489606 91683.720820 1284.720820 91700.0 92000.0 2.168210 11:29:53 91609.816482 2017-07 11:29:52 1210.816482 586.038608 2.066104
53 2017-07 -3.523930 601.577604 593.487422 8.090182 91768.751578 1369.751578 91800.0 92100.0 2.290349 11:29:54 91683.720820 2017-07 11:29:53 1284.720820 592.526129 2.168210
54 2017-07 -4.404913 606.893014 599.335398 7.557616 91853.166552 1454.166552 91900.0 92200.0 2.413602 11:29:55 91768.751578 2017-07 11:29:54 1369.751578 598.053674 2.290349
55 2017-07 -5.285895 610.982166 604.090258 6.891909 91943.947695 1544.947695 91900.0 92200.0 2.550697 11:29:56 91853.166552 2017-07 11:29:55 1454.166552 602.488102 2.413602
56 2017-07 -6.166878 613.711918 607.618858 6.093060 92042.646817 1643.646817 92000.0 92300.0 2.705391 11:29:57 91943.947695 2017-07 11:29:56 1544.947695 605.696271 2.550697
57 2017-07 -7.047860 614.949129 609.788059 5.161070 92085.651711 1686.651711 92100.0 92400.0 2.774549 11:29:58 92042.646817 2017-07 11:29:57 1643.646817 607.545041 2.705391
58 2017-07 -7.928843 614.560657 610.464718 4.095939 92175.935610 1776.935610 92200.0 92500.0 2.929183 11:29:59 92085.651711 2017-07 11:29:58 1686.651711 607.901269 2.774549
59 2017-07 -8.809825 612.413360 609.515695 2.897666 92252.692080 1853.692080 92300.0 92600.0 3.071042 11:30:00 92175.935610 2017-07 11:29:59 1776.935610 606.631814 2.929183

In [9]:
print(shl_sm_prediction_list_local_1)


[91800]

In [10]:
print(shl_sm_prediction_list_local_k)


[91900, 91900, 92000, 92100, 92200, 92200, 92300, 92400, 92500, 92600]

In [11]:
shl_pm.shl_data_pm_1_step.tail(11)


Out[11]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
40 2017-07 0.000000 605.051838 581.707467 23.344371 91066.544509 667.544509 91100.0 91400.0 1.103285 11:29:41 91000.0 2017-07 11:29:40 601.0 558.410307 1.076270
41 2017-07 0.000000 580.903770 566.674689 14.229080 91074.585049 675.585049 91100.0 91400.0 1.162990 11:29:42 91000.0 2017-07 11:29:41 601.0 544.736942 1.103285
42 2017-07 0.000000 544.634657 540.097766 4.536891 91091.661625 692.661625 91100.0 91400.0 1.271791 11:29:43 91000.0 2017-07 11:29:42 601.0 516.771599 1.162990
43 2017-07 0.000000 492.420799 498.776159 -6.355360 91081.820890 682.820890 91100.0 91400.0 1.386661 11:29:44 91000.0 2017-07 11:29:43 601.0 472.561806 1.271791
44 2017-07 0.000000 496.388347 500.762417 -4.374070 91112.354439 713.354439 91100.0 91400.0 1.437089 11:29:45 91100.0 2017-07 11:29:44 701.0 505.530784 1.386661
45 2017-07 0.000000 485.245049 490.918347 -5.673297 91160.165397 761.165397 91200.0 91500.0 1.568621 11:29:46 91100.0 2017-07 11:29:45 701.0 487.791499 1.437089
46 2017-07 0.000000 499.567722 501.403165 -1.835443 91218.985977 819.985977 91200.0 91500.0 1.641391 11:29:47 91200.0 2017-07 11:29:46 801.0 510.639719 1.568621
47 2017-07 0.000000 536.596327 530.972539 5.623789 91337.545227 938.545227 91300.0 91600.0 1.749071 11:29:48 91300.0 2017-07 11:29:47 901.0 548.924652 1.641391
48 2017-07 0.000000 570.336407 559.316219 11.020188 91419.750898 1020.750898 91400.0 91700.0 1.789735 11:29:49 91400.0 2017-07 11:29:48 1001.0 572.303719 1.749071
49 2017-07 0.000000 572.667029 563.314642 9.352388 91505.926340 1106.926340 91500.0 91800.0 1.932932 11:29:50 91400.0 2017-07 11:29:49 1001.0 559.300750 1.789735
50 2017-07 -0.880983 579.605235 570.716205 8.889030 91557.134451 1158.134451 91600.0 91900.0 2.001185 11:29:51 91500.0 2017-07 11:29:50 1101.0 569.601044 1.932932

In [12]:
shl_pm.shl_data_pm_k_step.tail(20)


Out[12]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
40 2017-07 0.000000 605.051838 581.707467 23.344371 91066.544509 667.544509 91100.0 91400.0 1.103285 11:29:41 91000.000000 2017-07 11:29:40 601.000000 558.410307 1.076270
41 2017-07 0.000000 580.903770 566.674689 14.229080 91074.585049 675.585049 91100.0 91400.0 1.162990 11:29:42 91000.000000 2017-07 11:29:41 601.000000 544.736942 1.103285
42 2017-07 0.000000 544.634657 540.097766 4.536891 91091.661625 692.661625 91100.0 91400.0 1.271791 11:29:43 91000.000000 2017-07 11:29:42 601.000000 516.771599 1.162990
43 2017-07 0.000000 492.420799 498.776159 -6.355360 91081.820890 682.820890 91100.0 91400.0 1.386661 11:29:44 91000.000000 2017-07 11:29:43 601.000000 472.561806 1.271791
44 2017-07 0.000000 496.388347 500.762417 -4.374070 91112.354439 713.354439 91100.0 91400.0 1.437089 11:29:45 91100.000000 2017-07 11:29:44 701.000000 505.530784 1.386661
45 2017-07 0.000000 485.245049 490.918347 -5.673297 91160.165397 761.165397 91200.0 91500.0 1.568621 11:29:46 91100.000000 2017-07 11:29:45 701.000000 487.791499 1.437089
46 2017-07 0.000000 499.567722 501.403165 -1.835443 91218.985977 819.985977 91200.0 91500.0 1.641391 11:29:47 91200.000000 2017-07 11:29:46 801.000000 510.639719 1.568621
47 2017-07 0.000000 536.596327 530.972539 5.623789 91337.545227 938.545227 91300.0 91600.0 1.749071 11:29:48 91300.000000 2017-07 11:29:47 901.000000 548.924652 1.641391
48 2017-07 0.000000 570.336407 559.316219 11.020188 91419.750898 1020.750898 91400.0 91700.0 1.789735 11:29:49 91400.000000 2017-07 11:29:48 1001.000000 572.303719 1.749071
49 2017-07 0.000000 572.667029 563.314642 9.352388 91505.926340 1106.926340 91500.0 91800.0 1.932932 11:29:50 91400.000000 2017-07 11:29:49 1001.000000 559.300750 1.789735
50 2017-07 -0.880983 579.605235 570.716205 8.889030 91557.134451 1158.134451 91600.0 91900.0 2.001185 11:29:51 91500.000000 2017-07 11:29:50 1101.000000 569.601044 1.932932
51 2017-07 -1.761965 587.800573 579.044684 8.755889 91609.816482 1210.816482 91600.0 91900.0 2.066104 11:29:52 91557.134451 2017-07 11:29:51 1158.134451 578.724253 2.001185
52 2017-07 -2.642948 595.169076 586.679470 8.489606 91683.720820 1284.720820 91700.0 92000.0 2.168210 11:29:53 91609.816482 2017-07 11:29:52 1210.816482 586.038608 2.066104
53 2017-07 -3.523930 601.577604 593.487422 8.090182 91768.751578 1369.751578 91800.0 92100.0 2.290349 11:29:54 91683.720820 2017-07 11:29:53 1284.720820 592.526129 2.168210
54 2017-07 -4.404913 606.893014 599.335398 7.557616 91853.166552 1454.166552 91900.0 92200.0 2.413602 11:29:55 91768.751578 2017-07 11:29:54 1369.751578 598.053674 2.290349
55 2017-07 -5.285895 610.982166 604.090258 6.891909 91943.947695 1544.947695 91900.0 92200.0 2.550697 11:29:56 91853.166552 2017-07 11:29:55 1454.166552 602.488102 2.413602
56 2017-07 -6.166878 613.711918 607.618858 6.093060 92042.646817 1643.646817 92000.0 92300.0 2.705391 11:29:57 91943.947695 2017-07 11:29:56 1544.947695 605.696271 2.550697
57 2017-07 -7.047860 614.949129 609.788059 5.161070 92085.651711 1686.651711 92100.0 92400.0 2.774549 11:29:58 92042.646817 2017-07 11:29:57 1643.646817 607.545041 2.705391
58 2017-07 -7.928843 614.560657 610.464718 4.095939 92175.935610 1776.935610 92200.0 92500.0 2.929183 11:29:59 92085.651711 2017-07 11:29:58 1686.651711 607.901269 2.774549
59 2017-07 -8.809825 612.413360 609.515695 2.897666 92252.692080 1853.692080 92300.0 92600.0 3.071042 11:30:00 92175.935610 2017-07 11:29:59 1776.935610 606.631814 2.929183

In [ ]:

MISC - Validation


In [13]:
%matplotlib inline
import matplotlib.pyplot as plt

In [14]:
shl_data_pm_k_step_local = shl_pm.shl_data_pm_k_step.copy()
shl_data_pm_k_step_local.index = shl_data_pm_k_step_local.index + 1
shl_data_pm_k_step_local


Out[14]:
ccyy-mm f_1_step_pred_adj_misc f_1_step_pred_les f_1_step_pred_les_level f_1_step_pred_les_trend f_1_step_pred_price f_1_step_pred_price_inc f_1_step_pred_price_rounded f_1_step_pred_set_price_rounded f_1_step_si f_1_step_time f_current_bid f_current_datetime f_current_price4pm f_current_price4pmsi f_current_si
1 2017-07 0.000000 422.483383 422.483383 0.000000 90408.458677 9.458677 90400.0 90700.0 0.022388 11:29:01 90400.000000 2017-07 11:29:00 1.000000 422.483383 0.002367
2 2017-07 0.000000 124.987080 182.085965 -57.098885 90402.863447 3.863447 90400.0 90700.0 0.030911 11:29:02 90400.000000 2017-07 11:29:01 1.000000 44.666225 0.022388
3 2017-07 0.000000 -5.054063 66.044732 -71.098795 90398.809110 -0.190890 90400.0 90700.0 0.037770 11:29:03 90400.000000 2017-07 11:29:02 1.000000 32.351184 0.030911
4 2017-07 0.000000 -51.325580 15.008081 -66.333661 90396.654153 -2.345847 90400.0 90700.0 0.045705 11:29:04 90400.000000 2017-07 11:29:03 1.000000 26.476318 0.037770
5 2017-07 0.000000 -60.017096 -4.746773 -55.270323 90396.282431 -2.717569 90400.0 90700.0 0.045280 11:29:05 90400.000000 2017-07 11:29:04 1.000000 21.879334 0.045705
6 2017-07 0.000000 -50.639678 -7.777287 -42.862391 90394.910559 -4.089441 90400.0 90700.0 0.080756 11:29:06 90400.000000 2017-07 11:29:05 1.000000 22.084851 0.045280
7 2017-07 0.000000 -43.877474 -10.539602 -33.337872 90394.677994 -4.322006 90400.0 90700.0 0.098502 11:29:07 90400.000000 2017-07 11:29:06 1.000000 12.383032 0.080756
8 2017-07 0.000000 -34.672014 -9.499544 -25.172470 90394.279256 -4.720744 90400.0 90700.0 0.136154 11:29:08 90400.000000 2017-07 11:29:07 1.000000 10.152108 0.098502
9 2017-07 0.000000 -26.760255 -7.937687 -18.822568 90393.536513 -5.463487 90400.0 90700.0 0.204164 11:29:09 90400.000000 2017-07 11:29:08 1.000000 7.344608 0.136154
10 2017-07 0.000000 -20.654841 -6.616736 -14.038105 90394.227138 -4.772862 90400.0 90700.0 0.231077 11:29:10 90400.000000 2017-07 11:29:09 1.000000 4.898017 0.204164
11 2017-07 0.000000 325.733889 270.594763 55.139126 90493.796863 94.796863 90500.0 90800.0 0.291025 11:29:11 90500.000000 2017-07 11:29:10 101.000000 437.083427 0.231077
12 2017-07 0.000000 397.656427 339.296038 58.360390 90535.446795 136.446795 90500.0 90800.0 0.343127 11:29:12 90500.000000 2017-07 11:29:11 101.000000 347.048645 0.291025
13 2017-07 0.000000 374.673563 331.925499 42.748064 90530.538182 131.538182 90500.0 90800.0 0.351074 11:29:13 90500.000000 2017-07 11:29:12 101.000000 294.351356 0.343127
14 2017-07 0.000000 573.214382 500.564795 72.649588 90611.465091 212.465091 90600.0 90900.0 0.370656 11:29:14 90600.000000 2017-07 11:29:13 201.000000 572.528714 0.351074
15 2017-07 0.000000 621.507918 553.533022 67.974896 90648.315882 249.315882 90600.0 90900.0 0.401147 11:29:15 90600.000000 2017-07 11:29:14 201.000000 542.282454 0.370656
16 2017-07 0.000000 594.643909 544.871578 49.772331 90644.046963 245.046963 90600.0 90900.0 0.412090 11:29:16 90600.000000 2017-07 11:29:15 201.000000 501.063512 0.401147
17 2017-07 0.000000 751.329413 681.037085 70.292327 90739.779361 340.779361 90700.0 91000.0 0.453569 11:29:17 90700.000000 2017-07 11:29:16 301.000000 730.422507 0.412090
18 2017-07 0.000000 752.563612 695.525708 57.037903 90762.996569 363.996569 90800.0 91100.0 0.483675 11:29:18 90700.000000 2017-07 11:29:17 301.000000 663.626320 0.453569
19 2017-07 0.000000 707.045126 669.691015 37.354111 90755.734217 356.734217 90800.0 91100.0 0.504542 11:29:19 90700.000000 2017-07 11:29:18 301.000000 622.318083 0.483675
20 2017-07 0.000000 657.418283 636.758549 20.659734 90745.666546 346.666546 90700.0 91000.0 0.527315 11:29:20 90700.000000 2017-07 11:29:19 301.000000 596.580234 0.504542
21 2017-07 0.000000 609.886884 602.315170 7.571713 90744.620807 345.620807 90700.0 91000.0 0.566697 11:29:21 90700.000000 2017-07 11:29:20 301.000000 570.816265 0.527315
22 2017-07 0.000000 555.459304 559.787203 -4.327898 90720.268379 321.268379 90700.0 91000.0 0.578383 11:29:22 90700.000000 2017-07 11:29:21 301.000000 531.148438 0.566697
23 2017-07 0.000000 523.538135 533.162049 -9.623914 90708.075013 309.075013 90700.0 91000.0 0.590358 11:29:23 90700.000000 2017-07 11:29:22 301.000000 520.416142 0.578383
24 2017-07 0.000000 503.143928 514.834999 -11.691071 90711.119466 312.119466 90700.0 91000.0 0.620338 11:29:24 90700.000000 2017-07 11:29:23 301.000000 509.859976 0.590358
25 2017-07 0.000000 477.338691 491.738714 -14.400023 90715.190223 316.190223 90700.0 91000.0 0.662402 11:29:25 90700.000000 2017-07 11:29:24 301.000000 485.219087 0.620338
26 2017-07 0.000000 444.881807 462.747509 -17.865702 90701.661202 302.661202 90700.0 91000.0 0.680318 11:29:26 90700.000000 2017-07 11:29:25 301.000000 454.406669 0.662402
27 2017-07 0.000000 425.093411 443.328138 -18.234727 90697.158177 298.158177 90700.0 91000.0 0.701394 11:29:27 90700.000000 2017-07 11:29:26 301.000000 442.440005 0.680318
28 2017-07 0.000000 410.049007 427.671411 -17.622404 90696.741614 297.741614 90700.0 91000.0 0.726112 11:29:28 90700.000000 2017-07 11:29:27 301.000000 429.145087 0.701394
29 2017-07 0.000000 395.960050 412.904274 -16.944225 90692.496845 293.496845 90700.0 91000.0 0.741228 11:29:29 90700.000000 2017-07 11:29:28 301.000000 414.536447 0.726112
30 2017-07 0.000000 386.986438 402.400852 -15.414414 90702.736025 303.736025 90700.0 91000.0 0.784875 11:29:30 90700.000000 2017-07 11:29:29 301.000000 406.082644 0.741228
31 2017-07 0.000000 368.827170 384.768407 -15.941237 90689.761443 290.761443 90700.0 91000.0 0.788341 11:29:31 90700.000000 2017-07 11:29:30 301.000000 383.500501 0.784875
32 2017-07 0.000000 363.112378 377.090840 -13.978461 90694.715761 295.715761 90700.0 91000.0 0.814392 11:29:32 90700.000000 2017-07 11:29:31 301.000000 381.814648 0.788341
33 2017-07 0.000000 354.243070 367.240925 -12.997854 90694.828587 295.828587 90700.0 91000.0 0.835101 11:29:33 90700.000000 2017-07 11:29:32 301.000000 369.600949 0.814392
34 2017-07 0.000000 346.121291 358.183273 -12.061982 90699.102575 300.102575 90700.0 91000.0 0.867045 11:29:34 90700.000000 2017-07 11:29:33 301.000000 360.435634 0.835101
35 2017-07 0.000000 334.874307 346.779866 -11.905559 90707.624498 308.624498 90700.0 91000.0 0.921613 11:29:35 90700.000000 2017-07 11:29:34 301.000000 347.156330 0.867045
36 2017-07 0.000000 401.892576 398.650173 3.242403 90782.376971 383.376971 90800.0 91100.0 0.953929 11:29:36 90800.000000 2017-07 11:29:35 401.000000 435.106733 0.921613
37 2017-07 0.000000 419.681677 413.647306 6.034371 90809.434440 410.434440 90800.0 91100.0 0.977966 11:29:37 90800.000000 2017-07 11:29:36 401.000000 420.366728 0.953929
38 2017-07 0.000000 498.634793 478.605024 20.029769 90894.400465 495.400465 90900.0 91200.0 0.993514 11:29:38 90900.000000 2017-07 11:29:37 501.000000 512.287712 0.977966
39 2017-07 0.000000 602.357357 566.264312 36.093045 91020.965116 621.965116 91000.0 91300.0 1.032552 11:29:39 91000.000000 2017-07 11:29:38 601.000000 604.923757 0.993514
40 2017-07 0.000000 622.462725 589.438218 33.024508 91068.937666 669.937666 91100.0 91400.0 1.076270 11:29:40 91000.000000 2017-07 11:29:39 601.000000 582.053177 1.032552
41 2017-07 0.000000 605.051838 581.707467 23.344371 91066.544509 667.544509 91100.0 91400.0 1.103285 11:29:41 91000.000000 2017-07 11:29:40 601.000000 558.410307 1.076270
42 2017-07 0.000000 580.903770 566.674689 14.229080 91074.585049 675.585049 91100.0 91400.0 1.162990 11:29:42 91000.000000 2017-07 11:29:41 601.000000 544.736942 1.103285
43 2017-07 0.000000 544.634657 540.097766 4.536891 91091.661625 692.661625 91100.0 91400.0 1.271791 11:29:43 91000.000000 2017-07 11:29:42 601.000000 516.771599 1.162990
44 2017-07 0.000000 492.420799 498.776159 -6.355360 91081.820890 682.820890 91100.0 91400.0 1.386661 11:29:44 91000.000000 2017-07 11:29:43 601.000000 472.561806 1.271791
45 2017-07 0.000000 496.388347 500.762417 -4.374070 91112.354439 713.354439 91100.0 91400.0 1.437089 11:29:45 91100.000000 2017-07 11:29:44 701.000000 505.530784 1.386661
46 2017-07 0.000000 485.245049 490.918347 -5.673297 91160.165397 761.165397 91200.0 91500.0 1.568621 11:29:46 91100.000000 2017-07 11:29:45 701.000000 487.791499 1.437089
47 2017-07 0.000000 499.567722 501.403165 -1.835443 91218.985977 819.985977 91200.0 91500.0 1.641391 11:29:47 91200.000000 2017-07 11:29:46 801.000000 510.639719 1.568621
48 2017-07 0.000000 536.596327 530.972539 5.623789 91337.545227 938.545227 91300.0 91600.0 1.749071 11:29:48 91300.000000 2017-07 11:29:47 901.000000 548.924652 1.641391
49 2017-07 0.000000 570.336407 559.316219 11.020188 91419.750898 1020.750898 91400.0 91700.0 1.789735 11:29:49 91400.000000 2017-07 11:29:48 1001.000000 572.303719 1.749071
50 2017-07 0.000000 572.667029 563.314642 9.352388 91505.926340 1106.926340 91500.0 91800.0 1.932932 11:29:50 91400.000000 2017-07 11:29:49 1001.000000 559.300750 1.789735
51 2017-07 -0.880983 579.605235 570.716205 8.889030 91557.134451 1158.134451 91600.0 91900.0 2.001185 11:29:51 91500.000000 2017-07 11:29:50 1101.000000 569.601044 1.932932
52 2017-07 -1.761965 587.800573 579.044684 8.755889 91609.816482 1210.816482 91600.0 91900.0 2.066104 11:29:52 91557.134451 2017-07 11:29:51 1158.134451 578.724253 2.001185
53 2017-07 -2.642948 595.169076 586.679470 8.489606 91683.720820 1284.720820 91700.0 92000.0 2.168210 11:29:53 91609.816482 2017-07 11:29:52 1210.816482 586.038608 2.066104
54 2017-07 -3.523930 601.577604 593.487422 8.090182 91768.751578 1369.751578 91800.0 92100.0 2.290349 11:29:54 91683.720820 2017-07 11:29:53 1284.720820 592.526129 2.168210
55 2017-07 -4.404913 606.893014 599.335398 7.557616 91853.166552 1454.166552 91900.0 92200.0 2.413602 11:29:55 91768.751578 2017-07 11:29:54 1369.751578 598.053674 2.290349
56 2017-07 -5.285895 610.982166 604.090258 6.891909 91943.947695 1544.947695 91900.0 92200.0 2.550697 11:29:56 91853.166552 2017-07 11:29:55 1454.166552 602.488102 2.413602
57 2017-07 -6.166878 613.711918 607.618858 6.093060 92042.646817 1643.646817 92000.0 92300.0 2.705391 11:29:57 91943.947695 2017-07 11:29:56 1544.947695 605.696271 2.550697
58 2017-07 -7.047860 614.949129 609.788059 5.161070 92085.651711 1686.651711 92100.0 92400.0 2.774549 11:29:58 92042.646817 2017-07 11:29:57 1643.646817 607.545041 2.705391
59 2017-07 -7.928843 614.560657 610.464718 4.095939 92175.935610 1776.935610 92200.0 92500.0 2.929183 11:29:59 92085.651711 2017-07 11:29:58 1686.651711 607.901269 2.774549
60 2017-07 -8.809825 612.413360 609.515695 2.897666 92252.692080 1853.692080 92300.0 92600.0 3.071042 11:30:00 92175.935610 2017-07 11:29:59 1776.935610 606.631814 2.929183

In [15]:
# bid is predicted bid-price from shl_pm
plt.figure(figsize=(12,6))
plt.plot(shl_pm.shl_data_pm_k_step['f_current_bid'])
# plt.plot(shl_data_pm_1_step_k_step['f_1_step_pred_price'].shift(1))
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price'])

# bid is actual bid-price from raw dataset
shl_data_actual_bid_local = shl_sm_data[shl_sm_parm_ccyy_mm_offset:shl_sm_parm_ccyy_mm_offset+61].copy()
shl_data_actual_bid_local.reset_index(inplace=True)
plt.figure(figsize=(12,6))
plt.plot(shl_data_actual_bid_local['bid-price'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price'])

plt.figure(figsize=(12,6))
plt.plot(shl_data_actual_bid_local['bid-price'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price_rounded'])


Out[15]:
[<matplotlib.lines.Line2D at 0x7fad6f6a42b0>]

In [16]:
# pd.concat([shl_data_actual_bid_local['bid-price'], shl_data_pm_k_step_local['f_1_step_pred_price'], shl_data_pm_k_step_local['f_1_step_pred_price'] - shl_data_actual_bid_local['bid-price']], axis=1, join='inner')
pd.concat([shl_data_actual_bid_local['bid-price'].tail(11), shl_data_pm_k_step_local['f_1_step_pred_price'].tail(11), shl_data_pm_k_step_local['f_1_step_pred_price'].tail(11) - shl_data_actual_bid_local['bid-price'].tail(11)], axis=1, join='inner')


Out[16]:
bid-price f_1_step_pred_price 0
50 91500 91505.926340 5.926340
51 91600 91557.134451 -42.865549
52 91700 91609.816482 -90.183518
53 91800 91683.720820 -116.279180
54 91900 91768.751578 -131.248422
55 92000 91853.166552 -146.833448
56 92100 91943.947695 -156.052305
57 92100 92042.646817 -57.353183
58 92100 92085.651711 -14.348289
59 92200 92175.935610 -24.064390
60 92200 92252.692080 52.692080

The End