In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import nengo
In [36]:
N = 10
J = 50
span = np.linspace(0, 1, N)
image = (np.sin(2*np.pi*span)+1)/2
class AdaptiveWeights(object):
def __init__(self, w, learning_rate):
self.w = w
self.learning_rate = learning_rate
def make_node(self):
def update_forward(t, x, self=self):
pre_value = x
post_value = np.dot(self.w, x)
self.w += self.learning_rate * np.outer(post_value, pre_value)
return post_value
return nengo.Node(update_forward, size_in=self.w.shape[1], size_out=self.w.shape[0])
model = nengo.Network()
with model:
stim = nengo.Node(image)
residual = nengo.Node(None, size_in=N)
v1 = nengo.Ensemble(n_neurons=J, dimensions=1,
neuron_type=nengo.RectifiedLinear(),
gain=nengo.dists.Choice([1]),
bias=nengo.dists.Choice([0]))
nengo.Connection(v1.neurons, v1.neurons, synapse=0)
learning_rate=1e-6
tau = 0
w = np.random.uniform(-0.02, 0.02, (J, N))
adapt_fwd = AdaptiveWeights(w, learning_rate=learning_rate)
fwd_node = adapt_fwd.make_node()
adapt_rev = AdaptiveWeights(w.T, learning_rate=learning_rate)
rev_node = adapt_rev.make_node()
#nengo.Connection(residual, v1.neurons, transform=w, synapse=tau)
nengo.Connection(residual, fwd_node, synapse=tau)
nengo.Connection(fwd_node, v1.neurons, synapse=None)
nengo.Connection(stim, residual, synapse=0)
#nengo.Connection(v1.neurons, residual, transform=-w.T, synapse=tau)
nengo.Connection(v1.neurons, rev_node, synapse=tau)
nengo.Connection(rev_node, residual, transform=-1, synapse=None)
p_v1 = nengo.Probe(v1.neurons)
p_res = nengo.Probe(residual)
sim = nengo.Simulator(model)
sim.run(3.0)
In [37]:
plt.plot(sim.trange(), sim.data[p_v1])
plt.show()
In [38]:
recon = np.dot(sim.data[p_v1], w)
plt.imshow(recon, aspect='auto')
plt.colorbar()
plt.figure()
plt.plot(image)
plt.plot(recon[-1])
Out[38]:
In [39]:
plt.imshow(sim.data[p_res][:,:], aspect='auto')
Out[39]:
In [ ]:
In [ ]: