In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import nengo
In [2]:
model = nengo.Network()
with model:
stim = nengo.Node(lambda t: (1,0.5,0.25,0) if 0.5<t<1.5 else (0,0,0,0))
ens = nengo.Ensemble(n_neurons=4, dimensions=1,
neuron_type=nengo.RectifiedLinear(),
gain=nengo.dists.Choice([1]),
bias=nengo.dists.Choice([0]))
nengo.Connection(stim, ens.neurons, synapse=None, transform=0.001)
nengo.Connection(ens.neurons, ens.neurons, transform=0.99*np.eye(4), synapse=0)
p_stim = nengo.Probe(stim)
p = nengo.Probe(ens.neurons)
sim = nengo.Simulator(model)
sim.run(2.0)
plt.plot(sim.data[p])
Out[2]:
In [7]:
N = 10
J = 2000
span = np.linspace(0, 1, N)
image = (np.sin(2*np.pi*span)+1)/2
model = nengo.Network()
with model:
stim = nengo.Node(image)
residual = nengo.Node(None, size_in=N)
v1 = nengo.Ensemble(n_neurons=J, dimensions=1,
neuron_type=nengo.RectifiedLinear(),
gain=nengo.dists.Choice([1]),
bias=nengo.dists.Choice([0]))
nengo.Connection(v1.neurons, v1.neurons, synapse=0)
w = np.random.uniform(-0.002, 0.002, (J, N))
tau = 0.1
nengo.Connection(residual, v1.neurons, transform=w, synapse=tau)
nengo.Connection(stim, residual, synapse=0)
nengo.Connection(v1.neurons, residual, transform=-w.T, synapse=tau)
p_v1 = nengo.Probe(v1.neurons)
p_res = nengo.Probe(residual)
sim = nengo.Simulator(model)
sim.run(3.0)
In [8]:
plt.plot(sim.trange(), sim.data[p_v1])
plt.show()
In [9]:
recon = np.dot(sim.data[p_v1], w)
plt.imshow(recon, aspect='auto')
plt.colorbar()
plt.figure()
plt.plot(image)
plt.plot(recon[-1])
Out[9]:
In [10]:
plt.imshow(sim.data[p_res][:,:], aspect='auto')
Out[10]:
In [ ]: