In [1]:
%matplotlib inline
import nengo
import numpy as np
import pylab
In [40]:
model = nengo.Network()
with model:
stim = nengo.Node([0.5])
stim_attend = nengo.Node([0.5])
n_neurons = 50
dendrites = nengo.networks.EnsembleArray(n_neurons=100, ens_dimensions=2, n_ensembles=n_neurons)
encoders = nengo.dists.UniformHypersphere(surface=True).sample(n_neurons, d=1)
ens = nengo.Ensemble(n_neurons=n_neurons, dimensions=1, encoders=encoders)
for i in range(n_neurons):
dendrites.ensembles[i].neuron_type = nengo.Sigmoid()
nengo.Connection(stim, dendrites.ensembles[i][0])
nengo.Connection(stim_attend, dendrites.ensembles[i][1])
def product(x):
return x[0]*x[1]
conn = nengo.Connection(dendrites.ensembles[i], ens.neurons[i], function=product, transform=encoders[i])
p = nengo.Probe(ens, synapse=0.03)
In [41]:
sim = nengo.Simulator(model)
sim.run(1)
In [42]:
pylab.plot(sim.trange(), sim.data[p])
Out[42]:
In [ ]: