In [80]:
import nengo
import numpy as np
model = nengo.Network()
with model:
a = nengo.Ensemble(n_neurons=100, dimensions=1, neuron_type=nengo.AdaptiveLIF(tau_n=0.1, inc_n=0.1))
b = nengo.Ensemble(n_neurons=100, dimensions=1, neuron_type=nengo.LIF())
stimulus = nengo.Node(lambda t: 0 if t < 0.1 else 0.5)
stim_ens = nengo.Ensemble(n_neurons=100, dimensions=1)
tau_input = 0.01
nengo.Connection(stimulus, stim_ens, synapse=None)
nengo.Connection(stim_ens, a, synapse=tau_input)
nengo.Connection(stim_ens, b, synapse=tau_input)
tau_probe = 0.1
p_a = nengo.Probe(a, synapse=tau_probe)
p_b = nengo.Probe(b, synapse=0.03)
p_a_n = nengo.Probe(a.neurons)
p_b_n = nengo.Probe(b.neurons)
sim = nengo.Simulator(model)
sim.run(0.3)
plot(sim.trange(), sim.data[p_a]*2.7, label='ALIF')
plot(sim.trange(), sim.data[p_b], label='LIF')
legend(loc='best')
show()
print 'ALIF', sum(sim.data[p_a_n])
print 'LIF', sum(sim.data[p_b_n])
In [34]:
In [ ]: