In [51]:
import pandas as pd
import numpy.random as npr
import scipy.cluster.hierarchy as hac

dfTest = pd.DataFrame({
        'groupvar': npr.randint(2, size = 1000),
        'ElecCons': npr.normal(size = 1000), 
        'SomeOtherVar': npr.normal(size = 1000)
    })

hac.fclusterdata(X = dfTest.as_matrix(['ElecCons']), 
                t = 3, 
                 criterion = 'maxclust', 
                 metric = 'euclidean',
                method = 'average')


Out[51]:
array([2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2,
       3, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2,
       2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 2,
       2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3,
       2, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 3,
       3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2,
       3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3,
       2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 2, 2, 3, 2, 3,
       3, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2,
       2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2,
       2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2,
       2, 1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3,
       3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 3,
       2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3,
       3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3,
       3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2,
       3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
       3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3,
       2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3,
       3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2,
       2, 3, 3, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 3, 3, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2,
       3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2,
       2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2,
       2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 2, 2, 2,
       2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3,
       2, 2, 1, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 1,
       3, 2, 3, 2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2,
       2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 2, 3,
       2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3,
       3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3,
       2, 2, 3, 1, 3, 3, 2, 2, 2, 3, 3, 2, 1, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,
       3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2,
       3, 2, 3, 3, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3,
       2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2,
       2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2,
       2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2,
       3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3,
       3, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 3, 2,
       2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3,
       2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2,
       2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3,
       3, 2, 2, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2,
       2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2], dtype=int32)