Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [98]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [99]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    return x  / 256

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [100]:
def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    ret = np.zeros((len(x), 10))
    ret[np.arange(len(x)), x] = 1.0
    return ret

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [101]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [102]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [122]:
import tensorflow as tf
def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32,shape=[None,image_shape[0], image_shape[1], image_shape[2]],name="x")


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32,shape=[None,n_classes],name="y")


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32,name="keep_prob")


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [202]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # TODO: Implement Function
    W=tf.Variable(tf.truncated_normal(
            (conv_ksize[0], conv_ksize[1], x_tensor.shape.as_list()[-1], conv_num_outputs)
        ,stddev=5e-2)
    )
    bias = tf.Variable(tf.zeros(conv_num_outputs))
    tmp_1 = tf.nn.conv2d(x_tensor, W, strides=(1, conv_strides[0], conv_strides[1], 1), padding='SAME')
    tmp_2 = tf.nn.bias_add(tmp_1 , bias)
    tmp_3 = tf.nn.relu(tmp_2)
    tmp_4 = tf.nn.max_pool(
       tmp_3,
       ksize=(1, pool_ksize[0], pool_ksize[1], 1),
       strides=(1, pool_strides[0], pool_strides[1], 1),
       padding='SAME')
    return tmp_4


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [124]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    dim = np.prod(x_tensor.shape.as_list()[1:])
    return tf.reshape(x_tensor,shape=(-1,dim))                  
                      
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [138]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    weights = tf.Variable(tf.truncated_normal(x_tensor.shape.as_list()[1:] + [num_outputs,]))
    bias = tf.Variable(tf.zeros([num_outputs]))
    return tf.nn.relu(tf.nn.bias_add(tf.matmul(x_tensor, weights) , bias))


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [179]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    weights = tf.Variable(tf.zeros(x_tensor.shape.as_list()[1:] + [num_outputs,]))
    bias = tf.Variable(tf.zeros([num_outputs]))
    return tf.nn.bias_add(tf.matmul(x_tensor, weights),bias)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [207]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    
    conv1 = conv2d_maxpool(x, 64, [5,5],[1,1], [3,3], [2,2])
    conv2 = conv2d_maxpool(conv1, 128, [5,5],[1,1], [3,3], [2,2])
    
    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    flat = flatten(conv2)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    fc1 = fully_conn(flat,384)
    fc2 = fully_conn(fc1,192)
    drop_fc = tf.nn.dropout(fc2, keep_prob)

    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    out = output(drop_fc, 10)
    
    # TODO: return output
    return out

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [141]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    session.run(optimizer, feed_dict={keep_prob:keep_probability,x: feature_batch, y: label_batch})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [223]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    train_cost=session.run(cost, feed_dict={keep_prob:1.0,x: feature_batch, y: label_batch})
    valid_accuracy=session.run(accuracy, feed_dict={keep_prob:1.0,x: valid_features, y: valid_labels})
    print('Loss:{},Validation Accuracy: {}'.format(
                train_cost,
                valid_accuracy))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [227]:
# TODO: Tune Parameters
epochs = 30
batch_size = 64
keep_probability = 0.5

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [228]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss:1.836368441581726,Validation Accuracy: 0.34939998388290405
Epoch  2, CIFAR-10 Batch 1:  Loss:1.6830476522445679,Validation Accuracy: 0.4007999300956726
Epoch  3, CIFAR-10 Batch 1:  Loss:1.6482579708099365,Validation Accuracy: 0.392799973487854
Epoch  4, CIFAR-10 Batch 1:  Loss:1.5964672565460205,Validation Accuracy: 0.4527999758720398
Epoch  5, CIFAR-10 Batch 1:  Loss:1.4999802112579346,Validation Accuracy: 0.439799964427948
Epoch  6, CIFAR-10 Batch 1:  Loss:1.3879115581512451,Validation Accuracy: 0.454399973154068
Epoch  7, CIFAR-10 Batch 1:  Loss:1.5394436120986938,Validation Accuracy: 0.4939999580383301
Epoch  8, CIFAR-10 Batch 1:  Loss:1.2062110900878906,Validation Accuracy: 0.4931999742984772
Epoch  9, CIFAR-10 Batch 1:  Loss:1.2142424583435059,Validation Accuracy: 0.4915999174118042
Epoch 10, CIFAR-10 Batch 1:  Loss:1.1779372692108154,Validation Accuracy: 0.5095999240875244
Epoch 11, CIFAR-10 Batch 1:  Loss:1.0854748487472534,Validation Accuracy: 0.5173999071121216
Epoch 12, CIFAR-10 Batch 1:  Loss:0.9378576874732971,Validation Accuracy: 0.5249999165534973
Epoch 13, CIFAR-10 Batch 1:  Loss:0.9410820603370667,Validation Accuracy: 0.5261999368667603
Epoch 14, CIFAR-10 Batch 1:  Loss:0.7835577726364136,Validation Accuracy: 0.5239999294281006
Epoch 15, CIFAR-10 Batch 1:  Loss:0.8819828033447266,Validation Accuracy: 0.5155999660491943
Epoch 16, CIFAR-10 Batch 1:  Loss:0.7304059863090515,Validation Accuracy: 0.5209999084472656
Epoch 17, CIFAR-10 Batch 1:  Loss:0.7274624109268188,Validation Accuracy: 0.5349999666213989
Epoch 18, CIFAR-10 Batch 1:  Loss:0.6451742053031921,Validation Accuracy: 0.5347999334335327
Epoch 19, CIFAR-10 Batch 1:  Loss:0.5362122058868408,Validation Accuracy: 0.5415999889373779
Epoch 20, CIFAR-10 Batch 1:  Loss:0.5460518598556519,Validation Accuracy: 0.5299999713897705
Epoch 21, CIFAR-10 Batch 1:  Loss:0.5252523422241211,Validation Accuracy: 0.5377999544143677
Epoch 22, CIFAR-10 Batch 1:  Loss:0.40797996520996094,Validation Accuracy: 0.5175999402999878
Epoch 23, CIFAR-10 Batch 1:  Loss:0.4946869909763336,Validation Accuracy: 0.5361999869346619
Epoch 24, CIFAR-10 Batch 1:  Loss:0.3766777217388153,Validation Accuracy: 0.5327999591827393
Epoch 25, CIFAR-10 Batch 1:  Loss:0.3478321135044098,Validation Accuracy: 0.5449999570846558
Epoch 26, CIFAR-10 Batch 1:  Loss:0.36411726474761963,Validation Accuracy: 0.5407999753952026
Epoch 27, CIFAR-10 Batch 1:  Loss:0.394994854927063,Validation Accuracy: 0.5339999198913574
Epoch 28, CIFAR-10 Batch 1:  Loss:0.36337006092071533,Validation Accuracy: 0.5483999252319336
Epoch 29, CIFAR-10 Batch 1:  Loss:0.3049042522907257,Validation Accuracy: 0.5405998826026917
Epoch 30, CIFAR-10 Batch 1:  Loss:0.29675179719924927,Validation Accuracy: 0.5359998941421509

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [229]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss:1.845546007156372,Validation Accuracy: 0.3384000062942505
Epoch  1, CIFAR-10 Batch 2:  Loss:1.7508964538574219,Validation Accuracy: 0.39640000462532043
Epoch  1, CIFAR-10 Batch 3:  Loss:1.3788059949874878,Validation Accuracy: 0.4163999855518341
Epoch  1, CIFAR-10 Batch 4:  Loss:1.5384399890899658,Validation Accuracy: 0.44159996509552
Epoch  1, CIFAR-10 Batch 5:  Loss:1.4622888565063477,Validation Accuracy: 0.4721999764442444
Epoch  2, CIFAR-10 Batch 1:  Loss:1.5498096942901611,Validation Accuracy: 0.4827999472618103
Epoch  2, CIFAR-10 Batch 2:  Loss:1.3907922506332397,Validation Accuracy: 0.4907999336719513
Epoch  2, CIFAR-10 Batch 3:  Loss:1.1198939085006714,Validation Accuracy: 0.4965999722480774
Epoch  2, CIFAR-10 Batch 4:  Loss:1.382214903831482,Validation Accuracy: 0.5229999423027039
Epoch  2, CIFAR-10 Batch 5:  Loss:1.4252651929855347,Validation Accuracy: 0.5187999606132507
Epoch  3, CIFAR-10 Batch 1:  Loss:1.4277703762054443,Validation Accuracy: 0.5133999586105347
Epoch  3, CIFAR-10 Batch 2:  Loss:1.3716366291046143,Validation Accuracy: 0.5255999565124512
Epoch  3, CIFAR-10 Batch 3:  Loss:1.0895497798919678,Validation Accuracy: 0.5401999354362488
Epoch  3, CIFAR-10 Batch 4:  Loss:1.1670039892196655,Validation Accuracy: 0.5461999177932739
Epoch  3, CIFAR-10 Batch 5:  Loss:1.2717788219451904,Validation Accuracy: 0.5501999258995056
Epoch  4, CIFAR-10 Batch 1:  Loss:1.1458698511123657,Validation Accuracy: 0.575999915599823
Epoch  4, CIFAR-10 Batch 2:  Loss:1.2748382091522217,Validation Accuracy: 0.5185999870300293
Epoch  4, CIFAR-10 Batch 3:  Loss:1.0006740093231201,Validation Accuracy: 0.5539999604225159
Epoch  4, CIFAR-10 Batch 4:  Loss:1.1719670295715332,Validation Accuracy: 0.5747999548912048
Epoch  4, CIFAR-10 Batch 5:  Loss:1.12062406539917,Validation Accuracy: 0.5495999455451965
Epoch  5, CIFAR-10 Batch 1:  Loss:1.0819424390792847,Validation Accuracy: 0.536799967288971
Epoch  5, CIFAR-10 Batch 2:  Loss:1.1458326578140259,Validation Accuracy: 0.5761999487876892
Epoch  5, CIFAR-10 Batch 3:  Loss:1.016005277633667,Validation Accuracy: 0.5815999507904053
Epoch  5, CIFAR-10 Batch 4:  Loss:1.0116956233978271,Validation Accuracy: 0.5867998600006104
Epoch  5, CIFAR-10 Batch 5:  Loss:1.0147954225540161,Validation Accuracy: 0.5871999263763428
Epoch  6, CIFAR-10 Batch 1:  Loss:1.100285291671753,Validation Accuracy: 0.5743998885154724
Epoch  6, CIFAR-10 Batch 2:  Loss:1.0792210102081299,Validation Accuracy: 0.5739999413490295
Epoch  6, CIFAR-10 Batch 3:  Loss:0.9159990549087524,Validation Accuracy: 0.5827999711036682
Epoch  6, CIFAR-10 Batch 4:  Loss:0.8822900056838989,Validation Accuracy: 0.6039998531341553
Epoch  6, CIFAR-10 Batch 5:  Loss:0.8366016149520874,Validation Accuracy: 0.6053999066352844
Epoch  7, CIFAR-10 Batch 1:  Loss:0.9819804430007935,Validation Accuracy: 0.595599889755249
Epoch  7, CIFAR-10 Batch 2:  Loss:1.0459011793136597,Validation Accuracy: 0.5857999324798584
Epoch  7, CIFAR-10 Batch 3:  Loss:0.8529675006866455,Validation Accuracy: 0.5971999168395996
Epoch  7, CIFAR-10 Batch 4:  Loss:0.8924795389175415,Validation Accuracy: 0.5991998910903931
Epoch  7, CIFAR-10 Batch 5:  Loss:0.8407667875289917,Validation Accuracy: 0.6213998794555664
Epoch  8, CIFAR-10 Batch 1:  Loss:0.7982321381568909,Validation Accuracy: 0.6117998957633972
Epoch  8, CIFAR-10 Batch 2:  Loss:1.0951236486434937,Validation Accuracy: 0.5629999041557312
Epoch  8, CIFAR-10 Batch 3:  Loss:0.767837405204773,Validation Accuracy: 0.6169998645782471
Epoch  8, CIFAR-10 Batch 4:  Loss:0.7415377497673035,Validation Accuracy: 0.6269998550415039
Epoch  8, CIFAR-10 Batch 5:  Loss:0.7800589203834534,Validation Accuracy: 0.6303999423980713
Epoch  9, CIFAR-10 Batch 1:  Loss:0.9583134651184082,Validation Accuracy: 0.6327998638153076
Epoch  9, CIFAR-10 Batch 2:  Loss:0.8020081520080566,Validation Accuracy: 0.6101998686790466
Epoch  9, CIFAR-10 Batch 3:  Loss:0.733704149723053,Validation Accuracy: 0.6227998733520508
Epoch  9, CIFAR-10 Batch 4:  Loss:0.6973176002502441,Validation Accuracy: 0.6233998537063599
Epoch  9, CIFAR-10 Batch 5:  Loss:0.6819025278091431,Validation Accuracy: 0.6239999532699585
Epoch 10, CIFAR-10 Batch 1:  Loss:0.6290898323059082,Validation Accuracy: 0.6413998603820801
Epoch 10, CIFAR-10 Batch 2:  Loss:0.9479936361312866,Validation Accuracy: 0.6213999390602112
Epoch 10, CIFAR-10 Batch 3:  Loss:0.6434822082519531,Validation Accuracy: 0.6361998915672302
Epoch 10, CIFAR-10 Batch 4:  Loss:0.7034756541252136,Validation Accuracy: 0.6319998502731323
Epoch 10, CIFAR-10 Batch 5:  Loss:0.6160358786582947,Validation Accuracy: 0.6369999647140503
Epoch 11, CIFAR-10 Batch 1:  Loss:0.741389811038971,Validation Accuracy: 0.6199999451637268
Epoch 11, CIFAR-10 Batch 2:  Loss:0.789894700050354,Validation Accuracy: 0.611599862575531
Epoch 11, CIFAR-10 Batch 3:  Loss:0.6905587911605835,Validation Accuracy: 0.6309999227523804
Epoch 11, CIFAR-10 Batch 4:  Loss:0.6801345348358154,Validation Accuracy: 0.6335999369621277
Epoch 11, CIFAR-10 Batch 5:  Loss:0.595529317855835,Validation Accuracy: 0.6509998440742493
Epoch 12, CIFAR-10 Batch 1:  Loss:0.6715943217277527,Validation Accuracy: 0.6393999457359314
Epoch 12, CIFAR-10 Batch 2:  Loss:0.8720917105674744,Validation Accuracy: 0.5901999473571777
Epoch 12, CIFAR-10 Batch 3:  Loss:0.5819410085678101,Validation Accuracy: 0.6303999423980713
Epoch 12, CIFAR-10 Batch 4:  Loss:0.7193584442138672,Validation Accuracy: 0.6355998516082764
Epoch 12, CIFAR-10 Batch 5:  Loss:0.6254732608795166,Validation Accuracy: 0.6273999214172363
Epoch 13, CIFAR-10 Batch 1:  Loss:0.5928624272346497,Validation Accuracy: 0.6577998995780945
Epoch 13, CIFAR-10 Batch 2:  Loss:0.7682554125785828,Validation Accuracy: 0.5969999432563782
Epoch 13, CIFAR-10 Batch 3:  Loss:0.5614230036735535,Validation Accuracy: 0.6303999423980713
Epoch 13, CIFAR-10 Batch 4:  Loss:0.6104066967964172,Validation Accuracy: 0.6365998983383179
Epoch 13, CIFAR-10 Batch 5:  Loss:0.5387861728668213,Validation Accuracy: 0.6475999355316162
Epoch 14, CIFAR-10 Batch 1:  Loss:0.5627380609512329,Validation Accuracy: 0.643799901008606
Epoch 14, CIFAR-10 Batch 2:  Loss:0.7088446617126465,Validation Accuracy: 0.6367998719215393
Epoch 14, CIFAR-10 Batch 3:  Loss:0.6012740731239319,Validation Accuracy: 0.6307998895645142
Epoch 14, CIFAR-10 Batch 4:  Loss:0.6852872371673584,Validation Accuracy: 0.6231999397277832
Epoch 14, CIFAR-10 Batch 5:  Loss:0.42419886589050293,Validation Accuracy: 0.650999903678894
Epoch 15, CIFAR-10 Batch 1:  Loss:0.5419507622718811,Validation Accuracy: 0.636199951171875
Epoch 15, CIFAR-10 Batch 2:  Loss:0.5869346857070923,Validation Accuracy: 0.6117998361587524
Epoch 15, CIFAR-10 Batch 3:  Loss:0.4577275514602661,Validation Accuracy: 0.6415998935699463
Epoch 15, CIFAR-10 Batch 4:  Loss:0.4994920492172241,Validation Accuracy: 0.6327998638153076
Epoch 15, CIFAR-10 Batch 5:  Loss:0.4777114987373352,Validation Accuracy: 0.6543999314308167
Epoch 16, CIFAR-10 Batch 1:  Loss:0.5421662926673889,Validation Accuracy: 0.6435999274253845
Epoch 16, CIFAR-10 Batch 2:  Loss:0.5539996027946472,Validation Accuracy: 0.6347998976707458
Epoch 16, CIFAR-10 Batch 3:  Loss:0.4380701780319214,Validation Accuracy: 0.6559998393058777
Epoch 16, CIFAR-10 Batch 4:  Loss:0.5842844247817993,Validation Accuracy: 0.658599853515625
Epoch 16, CIFAR-10 Batch 5:  Loss:0.4856487810611725,Validation Accuracy: 0.6607998609542847
Epoch 17, CIFAR-10 Batch 1:  Loss:0.5013048648834229,Validation Accuracy: 0.636199951171875
Epoch 17, CIFAR-10 Batch 2:  Loss:0.5835545063018799,Validation Accuracy: 0.6409998536109924
Epoch 17, CIFAR-10 Batch 3:  Loss:0.44562357664108276,Validation Accuracy: 0.6379998922348022
Epoch 17, CIFAR-10 Batch 4:  Loss:0.5319384336471558,Validation Accuracy: 0.6649999022483826
Epoch 17, CIFAR-10 Batch 5:  Loss:0.34301087260246277,Validation Accuracy: 0.6603999137878418
Epoch 18, CIFAR-10 Batch 1:  Loss:0.5123826265335083,Validation Accuracy: 0.6583998799324036
Epoch 18, CIFAR-10 Batch 2:  Loss:0.4513745903968811,Validation Accuracy: 0.6573999524116516
Epoch 18, CIFAR-10 Batch 3:  Loss:0.4956250488758087,Validation Accuracy: 0.6373999118804932
Epoch 18, CIFAR-10 Batch 4:  Loss:0.45721352100372314,Validation Accuracy: 0.6545999050140381
Epoch 18, CIFAR-10 Batch 5:  Loss:0.3898645043373108,Validation Accuracy: 0.6543998718261719
Epoch 19, CIFAR-10 Batch 1:  Loss:0.5260895490646362,Validation Accuracy: 0.6467999219894409
Epoch 19, CIFAR-10 Batch 2:  Loss:0.48628127574920654,Validation Accuracy: 0.6293998956680298
Epoch 19, CIFAR-10 Batch 3:  Loss:0.29459118843078613,Validation Accuracy: 0.6599999070167542
Epoch 19, CIFAR-10 Batch 4:  Loss:0.40476083755493164,Validation Accuracy: 0.6709998846054077
Epoch 19, CIFAR-10 Batch 5:  Loss:0.3492136597633362,Validation Accuracy: 0.6593999862670898
Epoch 20, CIFAR-10 Batch 1:  Loss:0.35020336508750916,Validation Accuracy: 0.6435999274253845
Epoch 20, CIFAR-10 Batch 2:  Loss:0.45050162076950073,Validation Accuracy: 0.6383998394012451
Epoch 20, CIFAR-10 Batch 3:  Loss:0.32244741916656494,Validation Accuracy: 0.6527999043464661
Epoch 20, CIFAR-10 Batch 4:  Loss:0.4097784459590912,Validation Accuracy: 0.6511998772621155
Epoch 20, CIFAR-10 Batch 5:  Loss:0.341744065284729,Validation Accuracy: 0.6503998637199402
Epoch 21, CIFAR-10 Batch 1:  Loss:0.4468623697757721,Validation Accuracy: 0.6415998935699463
Epoch 21, CIFAR-10 Batch 2:  Loss:0.47039228677749634,Validation Accuracy: 0.6659998893737793
Epoch 21, CIFAR-10 Batch 3:  Loss:0.3039386570453644,Validation Accuracy: 0.6489998698234558
Epoch 21, CIFAR-10 Batch 4:  Loss:0.4723595380783081,Validation Accuracy: 0.6577998995780945
Epoch 21, CIFAR-10 Batch 5:  Loss:0.24449583888053894,Validation Accuracy: 0.6405999064445496
Epoch 22, CIFAR-10 Batch 1:  Loss:0.40796107053756714,Validation Accuracy: 0.643799901008606
Epoch 22, CIFAR-10 Batch 2:  Loss:0.4825628399848938,Validation Accuracy: 0.6609998941421509
Epoch 22, CIFAR-10 Batch 3:  Loss:0.22193408012390137,Validation Accuracy: 0.6545999050140381
Epoch 22, CIFAR-10 Batch 4:  Loss:0.3897830843925476,Validation Accuracy: 0.657599925994873
Epoch 22, CIFAR-10 Batch 5:  Loss:0.2669983506202698,Validation Accuracy: 0.6653998494148254
Epoch 23, CIFAR-10 Batch 1:  Loss:0.34716683626174927,Validation Accuracy: 0.6401998996734619
Epoch 23, CIFAR-10 Batch 2:  Loss:0.39937886595726013,Validation Accuracy: 0.6535998582839966
Epoch 23, CIFAR-10 Batch 3:  Loss:0.40561333298683167,Validation Accuracy: 0.6537998914718628
Epoch 23, CIFAR-10 Batch 4:  Loss:0.35728222131729126,Validation Accuracy: 0.6683998703956604
Epoch 23, CIFAR-10 Batch 5:  Loss:0.228485569357872,Validation Accuracy: 0.642599880695343
Epoch 24, CIFAR-10 Batch 1:  Loss:0.2829046845436096,Validation Accuracy: 0.6639999151229858
Epoch 24, CIFAR-10 Batch 2:  Loss:0.3853584825992584,Validation Accuracy: 0.664199948310852
Epoch 24, CIFAR-10 Batch 3:  Loss:0.23833367228507996,Validation Accuracy: 0.660399854183197
Epoch 24, CIFAR-10 Batch 4:  Loss:0.34827885031700134,Validation Accuracy: 0.6507998704910278
Epoch 24, CIFAR-10 Batch 5:  Loss:0.28353631496429443,Validation Accuracy: 0.6283999085426331
Epoch 25, CIFAR-10 Batch 1:  Loss:0.42148882150650024,Validation Accuracy: 0.6653998494148254
Epoch 25, CIFAR-10 Batch 2:  Loss:0.22576406598091125,Validation Accuracy: 0.6611999273300171
Epoch 25, CIFAR-10 Batch 3:  Loss:0.2285924255847931,Validation Accuracy: 0.6531999111175537
Epoch 25, CIFAR-10 Batch 4:  Loss:0.30841749906539917,Validation Accuracy: 0.6679999828338623
Epoch 25, CIFAR-10 Batch 5:  Loss:0.23451778292655945,Validation Accuracy: 0.6327999234199524
Epoch 26, CIFAR-10 Batch 1:  Loss:0.2972826659679413,Validation Accuracy: 0.6703999042510986
Epoch 26, CIFAR-10 Batch 2:  Loss:0.27724170684814453,Validation Accuracy: 0.6643999218940735
Epoch 26, CIFAR-10 Batch 3:  Loss:0.17267361283302307,Validation Accuracy: 0.6605998873710632
Epoch 26, CIFAR-10 Batch 4:  Loss:0.28155267238616943,Validation Accuracy: 0.6745998859405518
Epoch 26, CIFAR-10 Batch 5:  Loss:0.2803328335285187,Validation Accuracy: 0.6345998644828796
Epoch 27, CIFAR-10 Batch 1:  Loss:0.28398892283439636,Validation Accuracy: 0.6711998581886292
Epoch 27, CIFAR-10 Batch 2:  Loss:0.20654280483722687,Validation Accuracy: 0.6661999225616455
Epoch 27, CIFAR-10 Batch 3:  Loss:0.23524866998195648,Validation Accuracy: 0.6369999051094055
Epoch 27, CIFAR-10 Batch 4:  Loss:0.34856313467025757,Validation Accuracy: 0.6597998738288879
Epoch 27, CIFAR-10 Batch 5:  Loss:0.23047472536563873,Validation Accuracy: 0.623999834060669
Epoch 28, CIFAR-10 Batch 1:  Loss:0.2874610424041748,Validation Accuracy: 0.6709998846054077
Epoch 28, CIFAR-10 Batch 2:  Loss:0.24358975887298584,Validation Accuracy: 0.6631999015808105
Epoch 28, CIFAR-10 Batch 3:  Loss:0.12831082940101624,Validation Accuracy: 0.6505998969078064
Epoch 28, CIFAR-10 Batch 4:  Loss:0.2518590986728668,Validation Accuracy: 0.6689999103546143
Epoch 28, CIFAR-10 Batch 5:  Loss:0.284963995218277,Validation Accuracy: 0.6625999212265015
Epoch 29, CIFAR-10 Batch 1:  Loss:0.26566147804260254,Validation Accuracy: 0.6721998453140259
Epoch 29, CIFAR-10 Batch 2:  Loss:0.2906607687473297,Validation Accuracy: 0.6677998900413513
Epoch 29, CIFAR-10 Batch 3:  Loss:0.10587909817695618,Validation Accuracy: 0.6679998636245728
Epoch 29, CIFAR-10 Batch 4:  Loss:0.3254629969596863,Validation Accuracy: 0.6339998841285706
Epoch 29, CIFAR-10 Batch 5:  Loss:0.23943613469600677,Validation Accuracy: 0.6627998948097229
Epoch 30, CIFAR-10 Batch 1:  Loss:0.20425882935523987,Validation Accuracy: 0.672799825668335
Epoch 30, CIFAR-10 Batch 2:  Loss:0.23134535551071167,Validation Accuracy: 0.665199875831604
Epoch 30, CIFAR-10 Batch 3:  Loss:0.17034298181533813,Validation Accuracy: 0.6665998697280884
Epoch 30, CIFAR-10 Batch 4:  Loss:0.20655757188796997,Validation Accuracy: 0.6505998969078064
Epoch 30, CIFAR-10 Batch 5:  Loss:0.12585675716400146,Validation Accuracy: 0.6591998338699341

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [230]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.6617237261146497

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.