In [1]:
%pylab inline
In [2]:
import sys
sys.path.insert(0, "../")
In [3]:
import root_numpy
import pandas
from utils import shrink_floats
import numpy
In [4]:
from rep.utils import train_test_split_group
In [5]:
for folder in ['Bu_JPsiK', 'Bd_JPsiKstar', 'Bd_JPsiKs']:
for f in ['Tracks', 'Vertices', 'Vertices_Mike']:
pd = pandas.read_csv('MC/csv/WG/{}/2012/{}.csv'.format(folder, f), sep='\t')
shrink_floats(pd)
# event_id = pd.run.apply(str) + '_' + pd.event.apply(int).apply(str)
# group_column = numpy.unique(event_id, return_inverse=True)[1]
# pd1, pd2 = train_test_split_group(group_column, pd, random_state=42)
# pd = pandas.concat([pd1, pd2])
root_numpy.array2root(pd.to_records(index=False), 'MC/csv/WG/{}/2012/{}.root'.format(folder, f),
mode='recreate')
In [ ]:
for folder in ['Bu_JPsiK', 'Bd_JPsiKstar', 'Bd_JPsiKs']:
for f in ['Tracks', 'Vertices', 'Vertices_Mike']:
pd = pandas.read_csv('data/csv/WG/{}/2012/{}.csv'.format(folder, f), sep='\t')
shrink_floats(pd)
# event_id = pd.run.apply(str) + '_' + pd.event.apply(int).apply(str)
# group_column = numpy.unique(event_id, return_inverse=True)[1]
# pd1, pd2 = train_test_split_group(group_column, pd, random_state=42)
# pd = pandas.concat([pd1, pd2])
root_numpy.array2root(pd.to_records(index=False), 'data/csv/WG/{}/2012/{}.root'.format(folder, f),
mode='recreate')
In [6]:
import root_numpy
In [18]:
data = root_numpy.root2array('data/csv/WG/Bu_JPsiK/2012/Tracks.root', branches=['signB', 'signTrack', 'run', 'event'])
In [20]:
data = pandas.DataFrame(data)
In [21]:
event_id = data['run'].apply(str) + '_' + data['event'].apply(int).apply(str)
In [22]:
data['id'] = event_id
In [29]:
w = []
z = []
for _, gr in data.groupby('id'):
w.append(set(gr['signB']))
z.append(set(gr['id']))
In [ ]:
for i, j in zip(w, z):
if len(i) != 1:
print i, z
In [15]:
x = data['signB']
y = data['signTrack']
In [16]:
set(x)
Out[16]:
In [17]:
set(y)
Out[17]:
In [ ]: