In [1]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

Read prepared B data for track-based and vertex-based tagging


In [2]:
import pandas
Bdata_tracks = pandas.read_csv('models/Bdata_tracks_OS.csv')
Bdata_vertex = pandas.read_csv('models/Bdata_vertex.csv')

In [3]:
Bdata_tracks.head()


Out[3]:
Bsign Bweight event_id track_relation_prob
0 1 1.091776 111761_12239990 0.842267
1 1 -0.237732 111761_14379738 0.891243
2 1 -0.417194 111761_16432326 2.229369
3 -1 1.044602 111761_29035939 1.190497
4 -1 1.062837 111761_30938577 0.505618

In [4]:
Bdata_vertex.head()


Out[4]:
Bsign Bweight event_id vertex_relation_prob
0 1 1.091776 111761_12239990 1.410856
1 1 -0.237732 111761_14379738 0.360223
2 1 -0.442830 111761_33866816 1.278433
3 -1 0.991477 111761_43041334 0.928330
4 -1 1.091055 111761_48273537 0.821604

Merge two datasets


In [5]:
Bdata = pandas.merge(Bdata_tracks, Bdata_vertex, how='outer', on=['event_id', 'Bsign'])

In [6]:
Bdata.head()


Out[6]:
Bsign Bweight_x event_id track_relation_prob Bweight_y vertex_relation_prob
0 1 1.091776 111761_12239990 0.842267 1.091776 1.410856
1 1 -0.237732 111761_14379738 0.891243 -0.237732 0.360223
2 1 -0.417194 111761_16432326 2.229369 NaN NaN
3 -1 1.044602 111761_29035939 1.190497 NaN NaN
4 -1 1.062837 111761_30938577 0.505618 NaN NaN

Obtain one weight column


In [7]:
Bdata['Bweight'] = Bdata['Bweight_x'].copy()
Bdata.ix[numpy.isnan(Bdata['Bweight'].values), 'Bweight'] = Bdata.ix[numpy.isnan(Bdata['Bweight'].values), 'Bweight_y']
Bdata = Bdata.drop(['Bweight_x', 'Bweight_y'], axis=1)

# for Nan put 1 as non influence factor
Bdata.ix[numpy.isnan(Bdata.track_relation_prob.values), 'track_relation_prob'] = 1.
Bdata.ix[numpy.isnan(Bdata.vertex_relation_prob.values), 'vertex_relation_prob'] = 1.

In [8]:
Bdata.head()


Out[8]:
Bsign event_id track_relation_prob vertex_relation_prob Bweight
0 1 111761_12239990 0.842267 1.410856 1.091776
1 1 111761_14379738 0.891243 0.360223 -0.237732
2 1 111761_16432326 2.229369 1.000000 -0.417194
3 -1 111761_29035939 1.190497 1.000000 1.044602
4 -1 111761_30938577 0.505618 1.000000 1.062837

In [9]:
relation_prob = Bdata['track_relation_prob'].values * Bdata['vertex_relation_prob'].values
Bprob = relation_prob / (1 + relation_prob)
Bweight = Bdata.Bweight.values
Bsign = Bdata.Bsign.values

In [10]:
Bprob[~numpy.isfinite(Bprob)] = 0.5

2-folding calibration by isotonic


In [11]:
from utils import calibrate_probs
Bprob_calibrated, (iso_reg1, iso_reg2) = calibrate_probs(Bsign, Bweight, Bprob,
                                                         symmetrize=True, return_calibrator=True)

Add some small noise in prediction for stability


In [12]:
Bprob_calibrated = Bprob_calibrated + numpy.random.normal(size=len(Bprob_calibrated)) * 0.001

In [13]:
figure(figsize=(15, 5))

subplot(1,2,1)
hist(Bprob[Bsign == 1], weights=Bweight[Bsign == 1], bins=60, alpha=0.2, normed=True, label='$B^+$')
hist(Bprob[Bsign == -1], weights=Bweight[Bsign == -1], bins=60, alpha=0.2, normed=True, label='$B^-$')
legend(), title('B probs')

subplot(1,2,2)
hist(Bprob_calibrated[Bsign == 1], weights=Bweight[Bsign == 1], bins=60, alpha=0.2, 
     normed=True, range=(0, 1), label='$B^+$')
hist(Bprob_calibrated[Bsign == -1], weights=Bweight[Bsign == -1], bins=60, alpha=0.2,
     normed=True, range=(0, 1), label='$B^-$')
legend(), title('B probs calibrated')
plt.savefig('img/Bprob_iso_calibrated_OS.png' , format='png')


AUC score and ROC curve for B+ vs B-


In [14]:
from utils import calculate_auc_with_and_without_untag_events
from sklearn.metrics import roc_curve

auc, auc_full = calculate_auc_with_and_without_untag_events(Bsign, Bprob_calibrated, Bweight)
print 'AUC for tagged:', auc, 'AUC with untag:', auc_full

fpr, tpr, _ = roc_curve(Bsign, Bprob_calibrated, sample_weight=Bweight)
plot(fpr, tpr)
plot([0, 1], [0, 1], 'k--')
ylim(0, 1), xlim(0, 1)


AUC for tagged: 0.580562662365 AUC with untag: 0.572022246588
Out[14]:
((0, 1), (0, 1))

Symmetry $B^+$ vs $B^-$ checking

before calibration


In [15]:
figsize(12, 8)
for sign in [-1, 1]:
    hist(sign * (Bprob[Bsign == sign] - 0.5), bins=101, normed=True, alpha=0.2, 
         weights=Bweight[Bsign == sign], range=(-0.5, 0.5), label='$B^-$' if sign == -1 else '$B^+$')
legend(), title('Symmetry of $p(B^+)$ for $B^+$ and $B^-$, before calibration')


Out[15]:
(<matplotlib.legend.Legend at 0x7f4303dd6550>,
 <matplotlib.text.Text at 0x7f42fe604810>)

KS distance


In [16]:
fpr, tpr, _ = roc_curve(Bsign, (Bprob - 0.5) * Bsign, sample_weight=Bweight)

In [17]:
from sklearn.metrics import roc_auc_score
roc_auc_score(Bsign, (Bprob - 0.5) * Bsign, sample_weight=Bweight)


Out[17]:
0.49341559136625013

In [18]:
'KS distance', max(abs(fpr - tpr))


Out[18]:
('KS distance', 0.011125595519959675)

In [19]:
figsize(6, 5)
plot(fpr, tpr), grid()
xlim(0, 1), ylim(0, 1)


Out[19]:
((0, 1), (0, 1))

after calibration


In [20]:
figsize(12, 8)
for sign in [-1, 1]:
    hist(sign * (Bprob_calibrated[Bsign == sign] - 0.5), bins=101, normed=True, alpha=0.2,
         weights=Bweight[Bsign == sign], range=(-0.5, 0.5), label='$B^-$' if sign == -1 else '$B^+$')
legend(), title('Symmetry of $p(B^+)$ for $B^+$ and $B^-$, after calibration')


Out[20]:
(<matplotlib.legend.Legend at 0x7f4303ac2710>,
 <matplotlib.text.Text at 0x7f43039e8990>)

KS distance


In [21]:
roc_auc_score(Bsign, (Bprob_calibrated - 0.5) * Bsign, sample_weight=Bweight)


Out[21]:
0.49337067602130769

In [22]:
fpr, tpr, _ = roc_curve(Bsign, (Bprob_calibrated - 0.5) * Bsign, sample_weight=Bweight)

In [23]:
'KS distance', max(abs(fpr - tpr))


Out[23]:
('KS distance', 0.011031716556955562)

In [24]:
figsize(6, 5)
plot(fpr, tpr), grid()
xlim(0, 1), ylim(0, 1)


Out[24]:
((0, 1), (0, 1))

D2 estimation with bootstrap calibration


In [ ]:
from utils import get_N_B_events, bootstrap_calibrate_prob, result_table

N_B_passed = Bweight.sum()
tagging_efficiency = N_B_passed / get_N_B_events()
tagging_efficiency_delta = numpy.sqrt(N_B_passed) / get_N_B_events()

print numpy.average((2*(Bprob - 0.5))**2, weights=Bweight) * tagging_efficiency * 100
print numpy.average((2*(Bprob_calibrated - 0.5))**2, weights=Bweight) * Bweight.sum() / get_N_B_events() * 100


2.71088622407
2.16485422516

In [ ]:
D2, aucs = bootstrap_calibrate_prob(Bsign, Bweight, Bprob, symmetrize=True)
print 'AUC', numpy.mean(aucs), numpy.var(aucs)

result = result_table(tagging_efficiency, tagging_efficiency_delta, D2, auc_full, 'Inclusive tagging, PID less')

In [29]:
result


Out[29]:
name $\epsilon_{tag}, \%$ $\Delta \epsilon_{tag}, \%$ $D^2$ $\Delta D^2$ $\epsilon, \%$ $\Delta \epsilon, \%$ AUC, with untag $\Delta$ AUC, with untag
0 Inclusive tagging, PID less 86.703092 0.108034 0.024937 0.00033 2.162137 0.02875 57.202225 0

In [30]:
result.to_csv('img/eff_OS.csv', header=True, index=False)

Some plots

Isotonic transformation, and its reverse (too check symmetry)


In [31]:
x = numpy.linspace(0, 1, 100)
plot(x, -(iso_reg1.transform((1-x)) + iso_reg2.transform((1-x))) / 2 + 1, label='isotonic transformation reverse')
plot(x, (iso_reg1.transform(x) + iso_reg2.transform(x)) / 2, label='isotonic transformation')
legend(loc='best')
plot([0, 1], [0, 1], "k--")
xlabel('B prob'), ylabel('B prob calibrated')
plt.savefig('img/iso_transformation_OS.png' , format='png')


Mistag checking


In [32]:
from utils import get_N_B_events, compute_mistag

In [33]:
bins = [0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45]
percentile_bins = [10, 20, 30, 40, 50, 60, 70, 80, 90]

before calibration


In [34]:
figsize(12, 10)
compute_mistag(Bprob, Bsign, Bweight, Bsign > -100, label="$B$", bins=bins)
compute_mistag(Bprob, Bsign, Bweight, Bsign == 1, label="$B^+$", bins=bins)
compute_mistag(Bprob, Bsign, Bweight, Bsign == -1, label="$B^-$", bins=bins)
legend(loc='best')
title('B prob, uniform bins'), xlabel('mistag probability'), ylabel('true mistag probability')
plt.savefig('img/Bprob_calibration_check_uniform_OS.png' , format='png')


/moosefs/miniconda/envs/ipython_py2/lib/python2.7/site-packages/matplotlib/collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  if self._edgecolors == str('face'):

In [35]:
compute_mistag(Bprob, Bsign, Bweight, Bsign > -100, label="$B$", uniform=False, bins=percentile_bins)
p1 = compute_mistag(Bprob, Bsign, Bweight, Bsign == 1, label="$B^+$", uniform=False, bins=percentile_bins)
compute_mistag(Bprob, Bsign, Bweight, Bsign == -1, label="$B^-$", uniform=False, bins=percentile_bins)
legend(loc='best')
title('B prob, percentile bins'), xlabel('mistag probability'), ylabel('true mistag probability')
plt.savefig('img/Bprob_calibration_check_percentile_OS.png' , format='png')


after calibration


In [36]:
compute_mistag(Bprob_calibrated, Bsign, Bweight, Bsign > -100, label="$B$", bins=bins)
compute_mistag(Bprob_calibrated, Bsign, Bweight, Bsign == 1, label="$B^+$", bins=bins)
compute_mistag(Bprob_calibrated, Bsign, Bweight, Bsign == -1, label="$B^-$", bins=bins)
legend(loc='best')
title('B prob isotonic calibrated, uniform bins'), xlabel('mistag probability'), ylabel('true mistag probability')
plt.savefig('img/Bprob_calibration_check_iso_uniform_OS.png' , format='png')



In [37]:
figsize(12, 10)
compute_mistag(Bprob_calibrated, Bsign, Bweight, Bsign > -100, label="$B$", uniform=False,
               bins=percentile_bins)
compute_mistag(Bprob_calibrated, Bsign, Bweight, Bsign == 1, label="$B^+$", uniform=False, 
               bins=percentile_bins)
compute_mistag(Bprob_calibrated, Bsign, Bweight, Bsign == -1, label="$B^-$", uniform=False, 
               bins=percentile_bins)
legend(loc='best'),  xlabel('mistag probability'), ylabel('true mistag probability')
title('B prob isotonic calibrated, percentile bins')
plt.savefig('img/Bprob_calibration_check_iso_percentile_OS.png' , format='png')