Linear Shell 2 order solution

Init symbols for sympy


In [1]:
from sympy import *
from geom_util import *
from sympy.vector import CoordSys3D
import matplotlib.pyplot as plt
import sys
sys.path.append("../")

%matplotlib inline

%reload_ext autoreload
%autoreload 2
%aimport geom_util

In [2]:
# Any tweaks that normally go in .matplotlibrc, etc., should explicitly go here
%config InlineBackend.figure_format='retina'
plt.rcParams['figure.figsize'] = (12, 12)

plt.rc('text', usetex=True)
    
plt.rc('font', family='serif')

init_printing()

In [3]:
N = CoordSys3D('N')
alpha1, alpha2, alpha3 = symbols("alpha_1 alpha_2 alpha_3", real = True, positive=True)
A,K,rho, h = symbols("A K rho h")

Square theory

$u^1 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u_{10}\left( \alpha_1 \right)p_0\left( \alpha_3 \right)+u_{11}\left( \alpha_1 \right)p_1\left( \alpha_3 \right)+u_{12}\left( \alpha_1 \right)p_2\left( \alpha_3 \right) $

$u^2 \left( \alpha_1, \alpha_2, \alpha_3 \right)=0 $

$u^3 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u_{30}\left( \alpha_1 \right)p_0\left( \alpha_3 \right)+u_{31}\left( \alpha_1 \right)p_1\left( \alpha_3 \right)+u_{32}\left( \alpha_1 \right)p_2\left( \alpha_3 \right) $

$ \left( \begin{array}{c} u^1 \\ \frac { \partial u^1 } { \partial \alpha_1} \\ \frac { \partial u^1 } { \partial \alpha_2} \\ \frac { \partial u^1 } { \partial \alpha_3} \\ u^2 \\ \frac { \partial u^2 } { \partial \alpha_1} \\ \frac { \partial u^2 } { \partial \alpha_2} \\ \frac { \partial u^2 } { \partial \alpha_3} \\ u^3 \\ \frac { \partial u^3 } { \partial \alpha_1} \\ \frac { \partial u^3 } { \partial \alpha_2} \\ \frac { \partial u^3 } { \partial \alpha_3} \\ \end{array} \right) = L \cdot \left( \begin{array}{c} u_{10} \\ \frac { \partial u_{10} } { \partial \alpha_1} \\ u_{11} \\ \frac { \partial u_{11} } { \partial \alpha_1} \\ u_{12} \\ \frac { \partial u_{12} } { \partial \alpha_1} \\ u_{30} \\ \frac { \partial u_{30} } { \partial \alpha_1} \\ u_{31} \\ \frac { \partial u_{31} } { \partial \alpha_1} \\ u_{32} \\ \frac { \partial u_{32} } { \partial \alpha_1} \\ \end{array} \right) $


In [4]:
L=zeros(12,12)
p0=1/2-alpha3/h
p1=1/2+alpha3/h
p2=1-(2*alpha3/h)**2

L[0,0]=p0
L[0,2]=p1
L[0,4]=p2

L[1,1]=p0
L[1,3]=p1
L[1,5]=p2

L[3,0]=p0.diff(alpha3)
L[3,2]=p1.diff(alpha3)
L[3,4]=p2.diff(alpha3)

L[8,6]=p0
L[8,8]=p1
L[8,10]=p2

L[9,7]=p0
L[9,9]=p1
L[9,11]=p2

L[11,6]=p0.diff(alpha3)
L[11,8]=p1.diff(alpha3)
L[11,10]=p2.diff(alpha3)

L


Out[4]:
$$\left[\begin{array}{cccccccccccc}- \frac{\alpha_{3}}{h} + 0.5 & 0 & \frac{\alpha_{3}}{h} + 0.5 & 0 & - \frac{4 \alpha_{3}^{2}}{h^{2}} + 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & - \frac{\alpha_{3}}{h} + 0.5 & 0 & \frac{\alpha_{3}}{h} + 0.5 & 0 & - \frac{4 \alpha_{3}^{2}}{h^{2}} + 1 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\- \frac{1}{h} & 0 & \frac{1}{h} & 0 & - \frac{8 \alpha_{3}}{h^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & - \frac{\alpha_{3}}{h} + 0.5 & 0 & \frac{\alpha_{3}}{h} + 0.5 & 0 & - \frac{4 \alpha_{3}^{2}}{h^{2}} + 1 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & - \frac{\alpha_{3}}{h} + 0.5 & 0 & \frac{\alpha_{3}}{h} + 0.5 & 0 & - \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & - \frac{1}{h} & 0 & \frac{1}{h} & 0 & - \frac{8 \alpha_{3}}{h^{2}} & 0\end{array}\right]$$

In [5]:
B=Matrix([[0, 1/(A*(K*alpha3 + 1)), 0, 0, 0, 0, 0, 0, K/(K*alpha3 + 1), 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1/(A*(K*alpha3 + 1)), 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [-K/(K*alpha3 + 1), 0, 0, 0, 0, 0, 0, 0, 0, 1/(A*(K*alpha3 + 1)), 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
B


Out[5]:
$$\left[\begin{array}{cccccccccccc}0 & \frac{1}{A \left(K \alpha_{3} + 1\right)} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{K}{K \alpha_{3} + 1} & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & \frac{1}{A \left(K \alpha_{3} + 1\right)} & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\- \frac{K}{K \alpha_{3} + 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{A \left(K \alpha_{3} + 1\right)} & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$$

In [6]:
E=zeros(6,9)
E[0,0]=1
E[1,4]=1
E[2,8]=1
E[3,1]=1
E[3,3]=1
E[4,2]=1
E[4,6]=1
E[5,5]=1
E[5,7]=1
E


Out[6]:
$$\left[\begin{matrix}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\end{matrix}\right]$$

In [7]:
simplify(E*B*L)


Out[7]:
$$\left[\begin{array}{cccccccccccc}0 & \frac{- \alpha_{3} + 0.5 h}{A h \left(K \alpha_{3} + 1\right)} & 0 & \frac{\alpha_{3} + 0.5 h}{A h \left(K \alpha_{3} + 1\right)} & 0 & \frac{- 4 \alpha_{3}^{2} + h^{2}}{A h^{2} \left(K \alpha_{3} + 1\right)} & - \frac{K \left(\alpha_{3} - 0.5 h\right)}{h \left(K \alpha_{3} + 1\right)} & 0 & \frac{K \left(\alpha_{3} + 0.5 h\right)}{h \left(K \alpha_{3} + 1\right)} & 0 & \frac{K \left(- 4 \alpha_{3}^{2} + h^{2}\right)}{h^{2} \left(K \alpha_{3} + 1\right)} & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & - \frac{1}{h} & 0 & \frac{1}{h} & 0 & - \frac{8 \alpha_{3}}{h^{2}} & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\- \frac{0.5 K h + 1.0}{h \left(K \alpha_{3} + 1\right)} & 0 & \frac{- 0.5 K h + 1.0}{h \left(K \alpha_{3} + 1\right)} & 0 & - \frac{4 K \alpha_{3}^{2} + K h^{2} + 8 \alpha_{3}}{h^{2} \left(K \alpha_{3} + 1\right)} & 0 & 0 & \frac{- \alpha_{3} + 0.5 h}{A h \left(K \alpha_{3} + 1\right)} & 0 & \frac{\alpha_{3} + 0.5 h}{A h \left(K \alpha_{3} + 1\right)} & 0 & \frac{- 4 \alpha_{3}^{2} + h^{2}}{A h^{2} \left(K \alpha_{3} + 1\right)}\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$$

In [8]:
mu = Symbol('mu')
la = Symbol('lambda')
C_tensor = getIsotropicStiffnessTensor(mu, la)
C = convertStiffnessTensorToMatrix(C_tensor)
C


Out[8]:
$$\left[\begin{matrix}\lambda + 2 \mu & \lambda & \lambda & 0 & 0 & 0\\\lambda & \lambda + 2 \mu & \lambda & 0 & 0 & 0\\\lambda & \lambda & \lambda + 2 \mu & 0 & 0 & 0\\0 & 0 & 0 & \mu & 0 & 0\\0 & 0 & 0 & 0 & \mu & 0\\0 & 0 & 0 & 0 & 0 & \mu\end{matrix}\right]$$

In [9]:
S=L.T*B.T*E.T*C*E*B*L*A*(1+alpha3*K)**2
S=simplify(S)
S


Out[9]:
$$\left[\begin{array}{cccccccccccc}\frac{1.0 A}{h^{2}} \mu \left(0.25 K^{2} h^{2} + 1.0 K h + 1.0\right) & 0 & 0.25 A K^{2} \mu - \frac{1.0 A}{h^{2}} \mu & 0 & - \frac{A \mu}{h^{3}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) - 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) \left(K \alpha_{3} - K \left(\alpha_{3} - 0.5 h\right) + 1\right) & 0 & 0 & \frac{\mu}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(K \alpha_{3} - K \left(\alpha_{3} - 0.5 h\right) + 1\right) & 0 & - \frac{\mu}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(K \alpha_{3} - K \left(\alpha_{3} - 0.5 h\right) + 1\right) & 0 & \frac{\mu}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \alpha_{3} - K \left(\alpha_{3} - 0.5 h\right) + 1\right)\\0 & \frac{\left(\alpha_{3} - 0.5 h\right)^{2}}{A h^{2}} \left(\lambda + 2 \mu\right) & 0 & - \frac{1}{A h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) & 0 & \frac{1}{A h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) & \frac{1}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & - \frac{1}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{1}{h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) & 0\\0.25 A K^{2} \mu - \frac{1.0 A}{h^{2}} \mu & 0 & \frac{1.0 A}{h^{2}} \mu \left(0.25 K^{2} h^{2} - 1.0 K h + 1.0\right) & 0 & \frac{A \mu}{h^{3}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) - 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) \left(K \alpha_{3} - K \left(\alpha_{3} + 0.5 h\right) + 1\right) & 0 & 0 & \frac{\mu}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(- K \alpha_{3} + K \left(\alpha_{3} + 0.5 h\right) - 1\right) & 0 & \frac{\mu}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(K \alpha_{3} - K \left(\alpha_{3} + 0.5 h\right) + 1\right) & 0 & \frac{\mu}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(- K \alpha_{3} + K \left(\alpha_{3} + 0.5 h\right) - 1\right)\\0 & - \frac{1}{A h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) & 0 & \frac{\left(\alpha_{3} + 0.5 h\right)^{2}}{A h^{2}} \left(\lambda + 2 \mu\right) & 0 & - \frac{1}{A h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) & - \frac{1}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{1}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & - \frac{1}{h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) & 0\\- \frac{A \mu}{h^{3}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) - 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) \left(K \alpha_{3} - K \left(\alpha_{3} - 0.5 h\right) + 1\right) & 0 & \frac{A \mu}{h^{3}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) - 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) \left(K \alpha_{3} - K \left(\alpha_{3} + 0.5 h\right) + 1\right) & 0 & \frac{A \mu}{h^{4}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) - 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right)^{2} & 0 & 0 & \frac{\mu}{h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(- K \left(4 \alpha_{3}^{2} - h^{2}\right) + 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{\mu}{h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) - 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{\mu}{h^{4}} \left(16 K \alpha_{3}^{4} - K h^{4} + 32 \alpha_{3}^{3} - 8 \alpha_{3} h^{2}\right)\\0 & \frac{1}{A h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) & 0 & - \frac{1}{A h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) & 0 & \frac{\left(4 \alpha_{3}^{2} - h^{2}\right)^{2}}{A h^{4}} \left(\lambda + 2 \mu\right) & \frac{1}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & - \frac{1}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{1}{h^{4}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) & 0\\0 & \frac{1}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & - \frac{1}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{1}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & \frac{A}{h^{2}} \left(K \left(\alpha_{3} - 0.5 h\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) + \left(K \alpha_{3} + 1\right) \left(K \lambda \left(\alpha_{3} - 0.5 h\right) + \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0 & - \frac{A}{h^{2}} \left(K \left(\alpha_{3} + 0.5 h\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) + \left(K \alpha_{3} + 1\right) \left(K \lambda \left(\alpha_{3} - 0.5 h\right) + \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0 & \frac{A}{h^{3}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(\alpha_{3} - 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) + 8 \alpha_{3} \left(K \alpha_{3} + 1\right) \left(K \lambda \left(\alpha_{3} - 0.5 h\right) + \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0\\\frac{\mu}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(K \alpha_{3} - K \left(\alpha_{3} - 0.5 h\right) + 1\right) & 0 & \frac{\mu}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(- K \alpha_{3} + K \left(\alpha_{3} + 0.5 h\right) - 1\right) & 0 & \frac{\mu}{h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(- K \left(4 \alpha_{3}^{2} - h^{2}\right) + 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) & 0 & 0 & \frac{\mu}{A h^{2}} \left(\alpha_{3} - 0.5 h\right)^{2} & 0 & - \frac{\alpha_{3}^{2} \mu}{A h^{2}} + \frac{0.25 \mu}{A} & 0 & \frac{\mu}{A h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right)\\0 & - \frac{1}{h^{2}} \left(\alpha_{3} - 0.5 h\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{1}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & - \frac{1}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) & - \frac{A}{h^{2}} \left(K \left(\alpha_{3} - 0.5 h\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) + \left(K \alpha_{3} + 1\right) \left(K \lambda \left(\alpha_{3} + 0.5 h\right) + \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0 & \frac{A}{h^{2}} \left(K \left(\alpha_{3} + 0.5 h\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) + \left(K \alpha_{3} + 1\right) \left(K \lambda \left(\alpha_{3} + 0.5 h\right) + \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0 & - \frac{A}{h^{3}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(\alpha_{3} + 0.5 h\right) \left(\lambda + 2 \mu\right) + \lambda \left(K \alpha_{3} + 1\right)\right) + 8 \alpha_{3} \left(K \alpha_{3} + 1\right) \left(K \lambda \left(\alpha_{3} + 0.5 h\right) + \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0\\\frac{\mu}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(- K \alpha_{3} + K \left(\alpha_{3} - 0.5 h\right) - 1\right) & 0 & \frac{\mu}{h^{2}} \left(\alpha_{3} + 0.5 h\right) \left(K \alpha_{3} - K \left(\alpha_{3} + 0.5 h\right) + 1\right) & 0 & \frac{\mu}{h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) - 8 \alpha_{3} \left(K \alpha_{3} + 1\right)\right) & 0 & 0 & - \frac{\alpha_{3}^{2} \mu}{A h^{2}} + \frac{0.25 \mu}{A} & 0 & \frac{\mu}{A h^{2}} \left(\alpha_{3} + 0.5 h\right)^{2} & 0 & - \frac{\mu}{A h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right)\\0 & \frac{1}{h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & - \frac{1}{h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) & 0 & \frac{1}{h^{4}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) & \frac{A}{h^{3}} \left(K \left(\alpha_{3} - 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) + \left(K \alpha_{3} + 1\right) \left(K \lambda \left(4 \alpha_{3}^{2} - h^{2}\right) + 8 \alpha_{3} \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0 & - \frac{A}{h^{3}} \left(K \left(\alpha_{3} + 0.5 h\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) + \left(K \alpha_{3} + 1\right) \left(K \lambda \left(4 \alpha_{3}^{2} - h^{2}\right) + 8 \alpha_{3} \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0 & \frac{A}{h^{4}} \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \left(4 \alpha_{3}^{2} - h^{2}\right) \left(\lambda + 2 \mu\right) + 8 \alpha_{3} \lambda \left(K \alpha_{3} + 1\right)\right) + 8 \alpha_{3} \left(K \alpha_{3} + 1\right) \left(K \lambda \left(4 \alpha_{3}^{2} - h^{2}\right) + 8 \alpha_{3} \left(\lambda + 2 \mu\right) \left(K \alpha_{3} + 1\right)\right)\right) & 0\\\frac{\mu}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(K \alpha_{3} - K \left(\alpha_{3} - 0.5 h\right) + 1\right) & 0 & \frac{\mu}{h^{3}} \left(4 \alpha_{3}^{2} - h^{2}\right) \left(- K \alpha_{3} + K \left(\alpha_{3} + 0.5 h\right) - 1\right) & 0 & \frac{\mu}{h^{4}} \left(16 K \alpha_{3}^{4} - K h^{4} + 32 \alpha_{3}^{3} - 8 \alpha_{3} h^{2}\right) & 0 & 0 & \frac{\mu}{A h^{3}} \left(\alpha_{3} - 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right) & 0 & - \frac{\mu}{A h^{3}} \left(\alpha_{3} + 0.5 h\right) \left(4 \alpha_{3}^{2} - h^{2}\right) & 0 & \frac{\mu}{A h^{4}} \left(4 \alpha_{3}^{2} - h^{2}\right)^{2}\end{array}\right]$$

In [10]:
S_in = integrate(S,(alpha3, -h/2, h/2))
S_in


Out[10]:
$$\left[\begin{array}{cccccccccccc}\frac{1.0 A}{h} \mu \left(0.25 K^{2} h^{2} + 1.0 K h + 1.0\right) & 0 & h \left(0.25 A K^{2} \mu - \frac{1.0 A}{h^{2}} \mu\right) & 0 & 0.666666666666667 A K^{2} h \mu + 1.33333333333333 A K \mu & 0 & 0 & - 0.25 K h \mu - 0.5 \mu & 0 & - 0.25 K h \mu - 0.5 \mu & 0 & - 0.333333333333333 K h \mu - 0.666666666666667 \mu\\0 & \frac{1.0 h}{A} \left(0.25 \lambda + 0.5 \mu\right) + \frac{0.0833333333333333 h}{A} \left(1.0 \lambda + 2.0 \mu\right) & 0 & \frac{0.0833333333333333 h}{A} \left(- 1.0 \lambda - 2.0 \mu\right) + \frac{1.0 h}{A} \left(0.25 \lambda + 0.5 \mu\right) & 0 & \frac{0.0833333333333333 h}{A} \left(- 2.0 \lambda - 4.0 \mu\right) + \frac{1.0 h}{A} \left(0.5 \lambda + 1.0 \mu\right) & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(2.0 K \lambda + 2.0 K \mu\right) - 0.5 \lambda & 0 & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(- 2.0 K \lambda - 2.0 K \mu\right) + 0.5 \lambda & 0 & - 0.5 K h \lambda - 0.333333333333333 K h \mu + h \left(0.5 K \lambda + 1.0 K \mu\right) + 0.666666666666667 \lambda & 0\\h \left(0.25 A K^{2} \mu - \frac{1.0 A}{h^{2}} \mu\right) & 0 & \frac{1.0 A}{h} \mu \left(0.25 K^{2} h^{2} - 1.0 K h + 1.0\right) & 0 & 0.666666666666667 A K^{2} h \mu - 1.33333333333333 A K \mu & 0 & 0 & - 0.25 K h \mu + 0.5 \mu & 0 & - 0.25 K h \mu + 0.5 \mu & 0 & - 0.333333333333333 K h \mu + 0.666666666666667 \mu\\0 & \frac{0.0833333333333333 h}{A} \left(- 1.0 \lambda - 2.0 \mu\right) + \frac{1.0 h}{A} \left(0.25 \lambda + 0.5 \mu\right) & 0 & \frac{1.0 h}{A} \left(0.25 \lambda + 0.5 \mu\right) + \frac{0.0833333333333333 h}{A} \left(1.0 \lambda + 2.0 \mu\right) & 0 & \frac{0.0833333333333333 h}{A} \left(- 2.0 \lambda - 4.0 \mu\right) + \frac{1.0 h}{A} \left(0.5 \lambda + 1.0 \mu\right) & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(- 2.0 K \lambda - 2.0 K \mu\right) - 0.5 \lambda & 0 & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(2.0 K \lambda + 2.0 K \mu\right) + 0.5 \lambda & 0 & - 0.5 K h \lambda - 0.333333333333333 K h \mu + h \left(0.5 K \lambda + 1.0 K \mu\right) - 0.666666666666667 \lambda & 0\\0.666666666666667 A K^{2} h \mu + 1.33333333333333 A K \mu & 0 & 0.666666666666667 A K^{2} h \mu - 1.33333333333333 A K \mu & 0 & \frac{6 A}{5} K^{2} h \mu + \frac{1}{12 h} \left(8 A K^{2} h^{2} \mu + 64 A \mu\right) & 0 & 0 & - 0.666666666666667 K h \mu + 0.666666666666667 \mu & 0 & - 0.666666666666667 K h \mu - 0.666666666666667 \mu & 0 & - \frac{4 K}{5} h \mu\\0 & \frac{0.0833333333333333 h}{A} \left(- 2.0 \lambda - 4.0 \mu\right) + \frac{1.0 h}{A} \left(0.5 \lambda + 1.0 \mu\right) & 0 & \frac{0.0833333333333333 h}{A} \left(- 2.0 \lambda - 4.0 \mu\right) + \frac{1.0 h}{A} \left(0.5 \lambda + 1.0 \mu\right) & 0 & \frac{h}{12 A} \left(- 8 \lambda - 16 \mu\right) + \frac{h}{A} \left(\lambda + 2 \mu\right) + \frac{h}{80 A} \left(16 \lambda + 32 \mu\right) & 0.333333333333333 K h \lambda + 0.666666666666667 K h \mu - 0.666666666666667 \lambda & 0 & 0.333333333333333 K h \lambda + 0.666666666666667 K h \mu + 0.666666666666667 \lambda & 0 & \frac{h}{12} \left(- 16 K \lambda - 16 K \mu\right) + h \left(K \lambda + 2 K \mu\right) + \frac{h}{80} \left(48 K \lambda + 32 K \mu\right) & 0\\0 & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(2.0 K \lambda + 2.0 K \mu\right) - 0.5 \lambda & 0 & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(- 2.0 K \lambda - 2.0 K \mu\right) - 0.5 \lambda & 0 & 0.333333333333333 K h \lambda + 0.666666666666667 K h \mu - 0.666666666666667 \lambda & 0.0833333333333333 h \left(4.0 A K^{2} \lambda + 4.0 A K^{2} \mu\right) + \frac{1.0}{h} \left(0.25 A K^{2} h^{2} \lambda + 0.5 A K^{2} h^{2} \mu - 1.0 A K h \lambda + 1.0 A \lambda + 2.0 A \mu\right) & 0 & 0.0833333333333333 h \left(- 4.0 A K^{2} \lambda - 4.0 A K^{2} \mu\right) + \frac{1.0}{h} \left(0.25 A K^{2} h^{2} \lambda + 0.5 A K^{2} h^{2} \mu - 1.0 A \lambda - 2.0 A \mu\right) & 0 & 0.666666666666667 A K^{2} h \mu + 1.33333333333333 A K \lambda + 2.66666666666667 A K \mu & 0\\- 0.25 K h \mu - 0.5 \mu & 0 & - 0.25 K h \mu + 0.5 \mu & 0 & - 0.666666666666667 K h \mu + 0.666666666666667 \mu & 0 & 0 & \frac{0.333333333333333 h}{A} \mu & 0 & \frac{0.166666666666667 h}{A} \mu & 0 & \frac{0.333333333333333 h}{A} \mu\\0 & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(- 2.0 K \lambda - 2.0 K \mu\right) + 0.5 \lambda & 0 & 0.25 K h \lambda + 0.5 K h \mu + 0.0833333333333333 h \left(2.0 K \lambda + 2.0 K \mu\right) + 0.5 \lambda & 0 & 0.333333333333333 K h \lambda + 0.666666666666667 K h \mu + 0.666666666666667 \lambda & 0.0833333333333333 h \left(- 4.0 A K^{2} \lambda - 4.0 A K^{2} \mu\right) + \frac{1.0}{h} \left(0.25 A K^{2} h^{2} \lambda + 0.5 A K^{2} h^{2} \mu - 1.0 A \lambda - 2.0 A \mu\right) & 0 & 0.0833333333333333 h \left(4.0 A K^{2} \lambda + 4.0 A K^{2} \mu\right) + \frac{1.0}{h} \left(0.25 A K^{2} h^{2} \lambda + 0.5 A K^{2} h^{2} \mu + 1.0 A K h \lambda + 1.0 A \lambda + 2.0 A \mu\right) & 0 & 0.666666666666667 A K^{2} h \mu - 1.33333333333333 A K \lambda - 2.66666666666667 A K \mu & 0\\- 0.25 K h \mu - 0.5 \mu & 0 & - 0.25 K h \mu + 0.5 \mu & 0 & - 0.666666666666667 K h \mu - 0.666666666666667 \mu & 0 & 0 & \frac{0.166666666666667 h}{A} \mu & 0 & \frac{0.333333333333333 h}{A} \mu & 0 & \frac{0.333333333333333 h}{A} \mu\\0 & - 0.5 K h \lambda - 0.333333333333333 K h \mu + h \left(0.5 K \lambda + 1.0 K \mu\right) + 0.666666666666667 \lambda & 0 & - 0.5 K h \lambda - 0.333333333333333 K h \mu + h \left(0.5 K \lambda + 1.0 K \mu\right) - 0.666666666666667 \lambda & 0 & \frac{h}{12} \left(- 16 K \lambda - 16 K \mu\right) + h \left(K \lambda + 2 K \mu\right) + \frac{h}{80} \left(48 K \lambda + 32 K \mu\right) & 0.666666666666667 A K^{2} h \mu + 1.33333333333333 A K \lambda + 2.66666666666667 A K \mu & 0 & 0.666666666666667 A K^{2} h \mu - 1.33333333333333 A K \lambda - 2.66666666666667 A K \mu & 0 & h \left(A K^{2} \lambda + 2 A K^{2} \mu\right) + \frac{h}{80} \left(144 A K^{2} \lambda + 160 A K^{2} \mu\right) + \frac{1}{12 h} \left(- 24 A K^{2} h^{2} \lambda - 16 A K^{2} h^{2} \mu + 64 A \lambda + 128 A \mu\right) & 0\\- 0.333333333333333 K h \mu - 0.666666666666667 \mu & 0 & - 0.333333333333333 K h \mu + 0.666666666666667 \mu & 0 & - \frac{4 K}{5} h \mu & 0 & 0 & \frac{0.333333333333333 h}{A} \mu & 0 & \frac{0.333333333333333 h}{A} \mu & 0 & \frac{8 h \mu}{15 A}\end{array}\right]$$

In [11]:
M=Matrix([[rho, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, rho, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, rho, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
M=L.T*M*L*A*(1+alpha3*K)
M


Out[11]:
$$\left[\begin{array}{cccccccccccc}A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right)^{2} & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(\frac{\alpha_{3}}{h} + 0.5\right)^{2} & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right)^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right)^{2} & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(\frac{\alpha_{3}}{h} + 0.5\right)^{2} & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(\frac{\alpha_{3}}{h} + 0.5\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right) & 0 & A \rho \left(K \alpha_{3} + 1\right) \left(- \frac{4 \alpha_{3}^{2}}{h^{2}} + 1\right)^{2} & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$$

In [12]:
M_in = integrate(M,(alpha3, -h/2, h/2))
M_in


Out[12]:
$$\left[\begin{array}{cccccccccccc}0.25 A h \rho + 0.0833333333333333 h \left(- 1.0 A K h \rho + 1.0 A \rho\right) & 0 & 0.166666666666667 A h \rho & 0 & 0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(- 1.0 A K h \rho - 2.0 A \rho\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0.166666666666667 A h \rho & 0 & 0.25 A h \rho + 0.0833333333333333 h \left(1.0 A K h \rho + 1.0 A \rho\right) & 0 & - 0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(1.0 A K h \rho - 2.0 A \rho\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(- 1.0 A K h \rho - 2.0 A \rho\right) & 0 & - 0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(1.0 A K h \rho - 2.0 A \rho\right) & 0 & \frac{8 A}{15} h \rho & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0.25 A h \rho + 0.0833333333333333 h \left(- 1.0 A K h \rho + 1.0 A \rho\right) & 0 & 0.166666666666667 A h \rho & 0 & 0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(- 1.0 A K h \rho - 2.0 A \rho\right) & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0.166666666666667 A h \rho & 0 & 0.25 A h \rho + 0.0833333333333333 h \left(1.0 A K h \rho + 1.0 A \rho\right) & 0 & - 0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(1.0 A K h \rho - 2.0 A \rho\right) & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(- 1.0 A K h \rho - 2.0 A \rho\right) & 0 & - 0.05 A K h^{2} \rho + 0.5 A h \rho + 0.0833333333333333 h \left(1.0 A K h \rho - 2.0 A \rho\right) & 0 & \frac{8 A}{15} h \rho & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$$

Cartesian coordinates


In [21]:
import fem.geometry as g
import fem.model as m
import fem.material as mat
import fem.shellsquared.shellsolver as s
import fem.shellsquared.mesh1D as me
import plot

stiffness_matrix_func = lambdify([A, K, mu, la, h], S_in, "numpy")
mass_matrix_func = lambdify([A, K, rho, h], M_in, "numpy")


def stiffness_matrix(material, geometry, x1, x2, x3):
    A,K = geometry.get_A_and_K(x1,x2,x3)
    return stiffness_matrix_func(A, K, material.mu(), material.lam(), thickness)

def mass_matrix(material, geometry, x1, x2, x3):
    A,K = geometry.get_A_and_K(x1,x2,x3)
    return mass_matrix_func(A, K, material.rho, thickness)



def generate_layers(thickness, layers_count, material):
    layer_top = thickness / 2
    layer_thickness = thickness / layers_count
    layers = set()
    for i in range(layers_count):
        layer = m.Layer(layer_top - layer_thickness, layer_top, material, i)
        layers.add(layer)
        layer_top -= layer_thickness
    return layers


def solve(geometry, thickness, linear, N_width):
    layers_count = 1
    layers = generate_layers(thickness, layers_count, mat.IsotropicMaterial.steel())
    model = m.Model(geometry, layers, m.Model.FIXED_BOTTOM_LEFT_RIGHT_POINTS)
    mesh = me.Mesh1D.generate(width, layers, N_width, m.Model.FIXED_BOTTOM_LEFT_RIGHT_POINTS)
    lam, vec = s.solve(model, mesh, stiffness_matrix, mass_matrix)
    
    return lam, vec, mesh, geometry



width = 2
curvature = 0.8
thickness = 0.05

corrugation_amplitude = 0.05
corrugation_frequency = 20

geometry = g.General(width, curvature, corrugation_amplitude, corrugation_frequency)

N_width = 600

lam, vec, mesh, geometry = solve(geometry, thickness, False, N_width)

results = s.convert_to_results(lam, vec, mesh, geometry, thickness)

results_index = 0
    
plot.plot_init_and_deformed_geometry_in_cartesian(results[results_index], 0, width, -thickness / 2, thickness / 2, 0, geometry.to_cartesian_coordinates)
to_print = 20
if (len(results) < to_print):
    to_print = len(results)
    
for i in range(to_print):
    print(results[i].rad_per_sec_to_Hz(results[i].freq))


131.560380182
181.479937601
310.286002134
339.953957816
547.056141824
586.510556942
817.045952187
823.776322676
1966.90084882
1985.88719619
2284.76423069
2289.79796396
2565.87766702
3019.75336609
3311.66482058
3919.19661367
4290.62566633
4622.47275436
5044.96767235
5569.9302207