Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    scale_max = 255
    scale_min = 0
    return (x-scale_min)/(scale_max-scale_min)
    


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [4]:
from sklearn import preprocessing
lb = preprocessing.LabelBinarizer()
lb.fit([0,1,2,3,4,5,6,7,8,9])

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    return lb.transform(x)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [5]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [6]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [7]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a bach of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=[None, image_shape[0], image_shape[1], image_shape[2]], name='x')


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=[None, n_classes], name='y')


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, name='keep_prob')



"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [8]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # TODO: Implement Function
    filter_height = conv_ksize[0]
    filter_width = conv_ksize[1]
    in_depth = x_tensor.get_shape().as_list()[3]
    out_depth = conv_num_outputs
    
    weights = tf.Variable(tf.truncated_normal([filter_height, filter_width, in_depth, out_depth], 
                                              mean = 0.0, stddev = 1.0/out_depth))
    biases = tf.Variable(tf.zeros(conv_num_outputs))
    
    conv_layer_out = tf.nn.bias_add(tf.nn.conv2d(x_tensor, weights, 
                                                 strides=[1, conv_strides[0], conv_strides[1], 1], padding='SAME'), 
                                                 biases)
    conv_layer_out = tf.nn.relu(conv_layer_out)
    maxpooling_out = tf.nn.max_pool(conv_layer_out, ksize=[1, pool_ksize[0], pool_ksize[1], 1], strides=[1, pool_strides[0], pool_strides[1], 1], padding='SAME') 
    
    return maxpooling_out 


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [9]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    x_dim = x_tensor.get_shape().as_list()
    return tf.reshape(x_tensor, [-1, x_dim[1]*x_dim[2]*x_dim[3]])


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [10]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    input_size = x_tensor.get_shape().as_list()[1]
    output_size = num_outputs 
    
    weights = tf.Variable(tf.truncated_normal([input_size, output_size], mean = 0.0, stddev = 1.0 / input_size))
    biases = tf.Variable(tf.zeros(num_outputs))
    fc_out = tf.add(tf.matmul(x_tensor, weights), biases)
    fc_out = tf.nn.relu(fc_out)
    
    return fc_out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [11]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    input_size = x_tensor.get_shape().as_list()[1]
    output_size = num_outputs
    
    weights = tf.Variable(tf.truncated_normal([input_size, output_size], mean = 0.0, stddev = 1.0/input_size))
    biases = tf.Variable(tf.zeros(num_outputs))    
    out = tf.add(tf.matmul(x_tensor, weights), biases)
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [12]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    conv = [16,32,64]
    num_output = 10
    
    conv_layer_1 = conv2d_maxpool(x, conv_num_outputs = conv[0], conv_ksize = [4, 4], conv_strides = [1, 1], pool_ksize = [2, 2], pool_strides = [2, 2])
    dropout_layer_1 = tf.nn.dropout(conv_layer_1, keep_prob) 
    conv_layer_2 = conv2d_maxpool(dropout_layer_1, conv_num_outputs = conv[1], conv_ksize = [4, 4], conv_strides = [1, 1], pool_ksize = [2, 2], pool_strides = [2, 2])
    dropout_layer_2 = tf.nn.dropout(conv_layer_2, keep_prob) 
    conv_layer_3 = conv2d_maxpool(dropout_layer_2, conv_num_outputs = conv[2], conv_ksize = [4, 4], conv_strides = [1, 1], pool_ksize = [2, 2], pool_strides = [2, 2])
    dropout_layer_3 = tf.nn.dropout(conv_layer_3, keep_prob) 

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    flatten_layer = flatten(dropout_layer_3)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    
    fc1 = fully_conn(flatten_layer, num_output)
    fc1_drop = tf.nn.dropout(fc1, keep_prob)
    fc2 = fully_conn(fc1_drop, num_output)
    fc2_drop = tf.nn.dropout(fc2, keep_prob)
    
    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    out_layer = output(fc2_drop, num_output)
    
    # TODO: return output
    return out_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [13]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    return session.run(optimizer, feed_dict={x:feature_batch,y:label_batch,keep_prob:keep_probability})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [14]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    loss = session.run(cost, feed_dict={x: feature_batch, y: label_batch, keep_prob: 1.})
    valid_acc = session.run(accuracy, feed_dict={x: valid_features, y: valid_labels, keep_prob: 1.})
    print('Loss: {:>10.4f}, Validation Accuracy: {:.6f}'.format(loss, valid_acc))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [15]:
# TODO: Tune Parameters
epochs = 100
batch_size = 256
keep_probability = 0.8

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [16]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.2795, Validation Accuracy: 0.152800
Epoch  2, CIFAR-10 Batch 1:  Loss:     2.2265, Validation Accuracy: 0.157000
Epoch  3, CIFAR-10 Batch 1:  Loss:     2.1975, Validation Accuracy: 0.210800
Epoch  4, CIFAR-10 Batch 1:  Loss:     2.1312, Validation Accuracy: 0.215200
Epoch  5, CIFAR-10 Batch 1:  Loss:     2.1310, Validation Accuracy: 0.240000
Epoch  6, CIFAR-10 Batch 1:  Loss:     2.0966, Validation Accuracy: 0.239400
Epoch  7, CIFAR-10 Batch 1:  Loss:     2.1807, Validation Accuracy: 0.229600
Epoch  8, CIFAR-10 Batch 1:  Loss:     2.0770, Validation Accuracy: 0.245800
Epoch  9, CIFAR-10 Batch 1:  Loss:     2.0406, Validation Accuracy: 0.246000
Epoch 10, CIFAR-10 Batch 1:  Loss:     2.0292, Validation Accuracy: 0.252000
Epoch 11, CIFAR-10 Batch 1:  Loss:     2.0265, Validation Accuracy: 0.276000
Epoch 12, CIFAR-10 Batch 1:  Loss:     2.0190, Validation Accuracy: 0.286400
Epoch 13, CIFAR-10 Batch 1:  Loss:     2.0073, Validation Accuracy: 0.286800
Epoch 14, CIFAR-10 Batch 1:  Loss:     2.0061, Validation Accuracy: 0.277800
Epoch 15, CIFAR-10 Batch 1:  Loss:     1.9894, Validation Accuracy: 0.288800
Epoch 16, CIFAR-10 Batch 1:  Loss:     1.9881, Validation Accuracy: 0.291000
Epoch 17, CIFAR-10 Batch 1:  Loss:     1.9734, Validation Accuracy: 0.301400
Epoch 18, CIFAR-10 Batch 1:  Loss:     1.9523, Validation Accuracy: 0.302800
Epoch 19, CIFAR-10 Batch 1:  Loss:     1.9351, Validation Accuracy: 0.304400
Epoch 20, CIFAR-10 Batch 1:  Loss:     1.9207, Validation Accuracy: 0.311400
Epoch 21, CIFAR-10 Batch 1:  Loss:     1.9205, Validation Accuracy: 0.300200
Epoch 22, CIFAR-10 Batch 1:  Loss:     1.8763, Validation Accuracy: 0.316400
Epoch 23, CIFAR-10 Batch 1:  Loss:     1.9161, Validation Accuracy: 0.310200
Epoch 24, CIFAR-10 Batch 1:  Loss:     1.8714, Validation Accuracy: 0.316600
Epoch 25, CIFAR-10 Batch 1:  Loss:     1.8408, Validation Accuracy: 0.317800
Epoch 26, CIFAR-10 Batch 1:  Loss:     1.9309, Validation Accuracy: 0.299200
Epoch 27, CIFAR-10 Batch 1:  Loss:     1.8292, Validation Accuracy: 0.321000
Epoch 28, CIFAR-10 Batch 1:  Loss:     1.8127, Validation Accuracy: 0.320000
Epoch 29, CIFAR-10 Batch 1:  Loss:     1.7810, Validation Accuracy: 0.321600
Epoch 30, CIFAR-10 Batch 1:  Loss:     1.8697, Validation Accuracy: 0.289000
Epoch 31, CIFAR-10 Batch 1:  Loss:     1.7619, Validation Accuracy: 0.327200
Epoch 32, CIFAR-10 Batch 1:  Loss:     1.7284, Validation Accuracy: 0.326000
Epoch 33, CIFAR-10 Batch 1:  Loss:     1.7555, Validation Accuracy: 0.318200
Epoch 34, CIFAR-10 Batch 1:  Loss:     1.7798, Validation Accuracy: 0.298400
Epoch 35, CIFAR-10 Batch 1:  Loss:     1.7011, Validation Accuracy: 0.332400
Epoch 36, CIFAR-10 Batch 1:  Loss:     1.7521, Validation Accuracy: 0.320600
Epoch 37, CIFAR-10 Batch 1:  Loss:     1.6777, Validation Accuracy: 0.330600
Epoch 38, CIFAR-10 Batch 1:  Loss:     1.7411, Validation Accuracy: 0.317200
Epoch 39, CIFAR-10 Batch 1:  Loss:     1.6642, Validation Accuracy: 0.329200
Epoch 40, CIFAR-10 Batch 1:  Loss:     1.6589, Validation Accuracy: 0.336400
Epoch 41, CIFAR-10 Batch 1:  Loss:     1.6758, Validation Accuracy: 0.337000
Epoch 42, CIFAR-10 Batch 1:  Loss:     1.6533, Validation Accuracy: 0.330400
Epoch 43, CIFAR-10 Batch 1:  Loss:     1.6172, Validation Accuracy: 0.343800
Epoch 44, CIFAR-10 Batch 1:  Loss:     1.6013, Validation Accuracy: 0.344400
Epoch 45, CIFAR-10 Batch 1:  Loss:     1.6245, Validation Accuracy: 0.344800
Epoch 46, CIFAR-10 Batch 1:  Loss:     1.5951, Validation Accuracy: 0.350400
Epoch 47, CIFAR-10 Batch 1:  Loss:     1.6227, Validation Accuracy: 0.342400
Epoch 48, CIFAR-10 Batch 1:  Loss:     1.5929, Validation Accuracy: 0.356200
Epoch 49, CIFAR-10 Batch 1:  Loss:     1.5805, Validation Accuracy: 0.353800
Epoch 50, CIFAR-10 Batch 1:  Loss:     1.5461, Validation Accuracy: 0.359200
Epoch 51, CIFAR-10 Batch 1:  Loss:     1.5511, Validation Accuracy: 0.348000
Epoch 52, CIFAR-10 Batch 1:  Loss:     1.5639, Validation Accuracy: 0.356600
Epoch 53, CIFAR-10 Batch 1:  Loss:     1.5657, Validation Accuracy: 0.345800
Epoch 54, CIFAR-10 Batch 1:  Loss:     1.5504, Validation Accuracy: 0.357000
Epoch 55, CIFAR-10 Batch 1:  Loss:     1.5345, Validation Accuracy: 0.360200
Epoch 56, CIFAR-10 Batch 1:  Loss:     1.5138, Validation Accuracy: 0.364000
Epoch 57, CIFAR-10 Batch 1:  Loss:     1.5138, Validation Accuracy: 0.367000
Epoch 58, CIFAR-10 Batch 1:  Loss:     1.5075, Validation Accuracy: 0.367600
Epoch 59, CIFAR-10 Batch 1:  Loss:     1.5279, Validation Accuracy: 0.363800
Epoch 60, CIFAR-10 Batch 1:  Loss:     1.4920, Validation Accuracy: 0.364000
Epoch 61, CIFAR-10 Batch 1:  Loss:     1.4969, Validation Accuracy: 0.364200
Epoch 62, CIFAR-10 Batch 1:  Loss:     1.4498, Validation Accuracy: 0.373400
Epoch 63, CIFAR-10 Batch 1:  Loss:     1.4654, Validation Accuracy: 0.370800
Epoch 64, CIFAR-10 Batch 1:  Loss:     1.4654, Validation Accuracy: 0.369000
Epoch 65, CIFAR-10 Batch 1:  Loss:     1.4554, Validation Accuracy: 0.367600
Epoch 66, CIFAR-10 Batch 1:  Loss:     1.4382, Validation Accuracy: 0.376000
Epoch 67, CIFAR-10 Batch 1:  Loss:     1.4475, Validation Accuracy: 0.375000
Epoch 68, CIFAR-10 Batch 1:  Loss:     1.4457, Validation Accuracy: 0.378800
Epoch 69, CIFAR-10 Batch 1:  Loss:     1.4271, Validation Accuracy: 0.376200
Epoch 70, CIFAR-10 Batch 1:  Loss:     1.4233, Validation Accuracy: 0.369000
Epoch 71, CIFAR-10 Batch 1:  Loss:     1.4109, Validation Accuracy: 0.380600
Epoch 72, CIFAR-10 Batch 1:  Loss:     1.3939, Validation Accuracy: 0.383400
Epoch 73, CIFAR-10 Batch 1:  Loss:     1.3947, Validation Accuracy: 0.385000
Epoch 74, CIFAR-10 Batch 1:  Loss:     1.4166, Validation Accuracy: 0.377800
Epoch 75, CIFAR-10 Batch 1:  Loss:     1.3872, Validation Accuracy: 0.376200
Epoch 76, CIFAR-10 Batch 1:  Loss:     1.3683, Validation Accuracy: 0.379800
Epoch 77, CIFAR-10 Batch 1:  Loss:     1.3771, Validation Accuracy: 0.377400
Epoch 78, CIFAR-10 Batch 1:  Loss:     1.3664, Validation Accuracy: 0.388600
Epoch 79, CIFAR-10 Batch 1:  Loss:     1.3543, Validation Accuracy: 0.380800
Epoch 80, CIFAR-10 Batch 1:  Loss:     1.3555, Validation Accuracy: 0.385000
Epoch 81, CIFAR-10 Batch 1:  Loss:     1.3487, Validation Accuracy: 0.385600
Epoch 82, CIFAR-10 Batch 1:  Loss:     1.3479, Validation Accuracy: 0.392800
Epoch 83, CIFAR-10 Batch 1:  Loss:     1.3666, Validation Accuracy: 0.384600
Epoch 84, CIFAR-10 Batch 1:  Loss:     1.3345, Validation Accuracy: 0.393600
Epoch 85, CIFAR-10 Batch 1:  Loss:     1.3505, Validation Accuracy: 0.385200
Epoch 86, CIFAR-10 Batch 1:  Loss:     1.3484, Validation Accuracy: 0.402800
Epoch 87, CIFAR-10 Batch 1:  Loss:     1.3483, Validation Accuracy: 0.398200
Epoch 88, CIFAR-10 Batch 1:  Loss:     1.3398, Validation Accuracy: 0.401400
Epoch 89, CIFAR-10 Batch 1:  Loss:     1.3072, Validation Accuracy: 0.406400
Epoch 90, CIFAR-10 Batch 1:  Loss:     1.3149, Validation Accuracy: 0.405000
Epoch 91, CIFAR-10 Batch 1:  Loss:     1.3103, Validation Accuracy: 0.407200
Epoch 92, CIFAR-10 Batch 1:  Loss:     1.3063, Validation Accuracy: 0.393800
Epoch 93, CIFAR-10 Batch 1:  Loss:     1.2902, Validation Accuracy: 0.402600
Epoch 94, CIFAR-10 Batch 1:  Loss:     1.2788, Validation Accuracy: 0.409400
Epoch 95, CIFAR-10 Batch 1:  Loss:     1.2847, Validation Accuracy: 0.411000
Epoch 96, CIFAR-10 Batch 1:  Loss:     1.2914, Validation Accuracy: 0.408200
Epoch 97, CIFAR-10 Batch 1:  Loss:     1.2635, Validation Accuracy: 0.415400
Epoch 98, CIFAR-10 Batch 1:  Loss:     1.2503, Validation Accuracy: 0.413200
Epoch 99, CIFAR-10 Batch 1:  Loss:     1.2615, Validation Accuracy: 0.417200
Epoch 100, CIFAR-10 Batch 1:  Loss:     1.2603, Validation Accuracy: 0.418400

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [17]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.2864, Validation Accuracy: 0.106400
Epoch  1, CIFAR-10 Batch 2:  Loss:     2.2371, Validation Accuracy: 0.157600
Epoch  1, CIFAR-10 Batch 3:  Loss:     1.9211, Validation Accuracy: 0.184400
Epoch  1, CIFAR-10 Batch 4:  Loss:     2.0783, Validation Accuracy: 0.193200
Epoch  1, CIFAR-10 Batch 5:  Loss:     2.0762, Validation Accuracy: 0.181800
Epoch  2, CIFAR-10 Batch 1:  Loss:     2.1839, Validation Accuracy: 0.194800
Epoch  2, CIFAR-10 Batch 2:  Loss:     2.0592, Validation Accuracy: 0.210400
Epoch  2, CIFAR-10 Batch 3:  Loss:     1.8698, Validation Accuracy: 0.189000
Epoch  2, CIFAR-10 Batch 4:  Loss:     1.9316, Validation Accuracy: 0.219400
Epoch  2, CIFAR-10 Batch 5:  Loss:     1.9865, Validation Accuracy: 0.208800
Epoch  3, CIFAR-10 Batch 1:  Loss:     2.0613, Validation Accuracy: 0.217000
Epoch  3, CIFAR-10 Batch 2:  Loss:     2.0253, Validation Accuracy: 0.217400
Epoch  3, CIFAR-10 Batch 3:  Loss:     1.7558, Validation Accuracy: 0.235400
Epoch  3, CIFAR-10 Batch 4:  Loss:     1.9120, Validation Accuracy: 0.227600
Epoch  3, CIFAR-10 Batch 5:  Loss:     1.9236, Validation Accuracy: 0.227600
Epoch  4, CIFAR-10 Batch 1:  Loss:     2.0227, Validation Accuracy: 0.225400
Epoch  4, CIFAR-10 Batch 2:  Loss:     2.0123, Validation Accuracy: 0.238800
Epoch  4, CIFAR-10 Batch 3:  Loss:     1.7574, Validation Accuracy: 0.249600
Epoch  4, CIFAR-10 Batch 4:  Loss:     1.9109, Validation Accuracy: 0.243600
Epoch  4, CIFAR-10 Batch 5:  Loss:     1.9065, Validation Accuracy: 0.230200
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.9973, Validation Accuracy: 0.249200
Epoch  5, CIFAR-10 Batch 2:  Loss:     2.0067, Validation Accuracy: 0.254200
Epoch  5, CIFAR-10 Batch 3:  Loss:     1.7182, Validation Accuracy: 0.255400
Epoch  5, CIFAR-10 Batch 4:  Loss:     1.9002, Validation Accuracy: 0.249600
Epoch  5, CIFAR-10 Batch 5:  Loss:     1.9146, Validation Accuracy: 0.240200
Epoch  6, CIFAR-10 Batch 1:  Loss:     1.9867, Validation Accuracy: 0.262200
Epoch  6, CIFAR-10 Batch 2:  Loss:     1.9936, Validation Accuracy: 0.267600
Epoch  6, CIFAR-10 Batch 3:  Loss:     1.7245, Validation Accuracy: 0.268000
Epoch  6, CIFAR-10 Batch 4:  Loss:     1.9023, Validation Accuracy: 0.261800
Epoch  6, CIFAR-10 Batch 5:  Loss:     1.8967, Validation Accuracy: 0.254600
Epoch  7, CIFAR-10 Batch 1:  Loss:     1.9722, Validation Accuracy: 0.255200
Epoch  7, CIFAR-10 Batch 2:  Loss:     1.9698, Validation Accuracy: 0.264600
Epoch  7, CIFAR-10 Batch 3:  Loss:     1.7013, Validation Accuracy: 0.272000
Epoch  7, CIFAR-10 Batch 4:  Loss:     1.9078, Validation Accuracy: 0.266000
Epoch  7, CIFAR-10 Batch 5:  Loss:     1.8951, Validation Accuracy: 0.269200
Epoch  8, CIFAR-10 Batch 1:  Loss:     2.0227, Validation Accuracy: 0.230400
Epoch  8, CIFAR-10 Batch 2:  Loss:     1.9524, Validation Accuracy: 0.272800
Epoch  8, CIFAR-10 Batch 3:  Loss:     1.6893, Validation Accuracy: 0.273200
Epoch  8, CIFAR-10 Batch 4:  Loss:     1.9186, Validation Accuracy: 0.271400
Epoch  8, CIFAR-10 Batch 5:  Loss:     1.8830, Validation Accuracy: 0.265200
Epoch  9, CIFAR-10 Batch 1:  Loss:     1.9560, Validation Accuracy: 0.261400
Epoch  9, CIFAR-10 Batch 2:  Loss:     1.9354, Validation Accuracy: 0.271800
Epoch  9, CIFAR-10 Batch 3:  Loss:     1.6670, Validation Accuracy: 0.271600
Epoch  9, CIFAR-10 Batch 4:  Loss:     1.9126, Validation Accuracy: 0.270200
Epoch  9, CIFAR-10 Batch 5:  Loss:     1.8587, Validation Accuracy: 0.266000
Epoch 10, CIFAR-10 Batch 1:  Loss:     2.0030, Validation Accuracy: 0.219600
Epoch 10, CIFAR-10 Batch 2:  Loss:     1.9554, Validation Accuracy: 0.269600
Epoch 10, CIFAR-10 Batch 3:  Loss:     1.6627, Validation Accuracy: 0.270800
Epoch 10, CIFAR-10 Batch 4:  Loss:     1.8954, Validation Accuracy: 0.270000
Epoch 10, CIFAR-10 Batch 5:  Loss:     1.8559, Validation Accuracy: 0.271400
Epoch 11, CIFAR-10 Batch 1:  Loss:     1.9457, Validation Accuracy: 0.264400
Epoch 11, CIFAR-10 Batch 2:  Loss:     1.9097, Validation Accuracy: 0.276800
Epoch 11, CIFAR-10 Batch 3:  Loss:     1.6542, Validation Accuracy: 0.278400
Epoch 11, CIFAR-10 Batch 4:  Loss:     1.9222, Validation Accuracy: 0.270200
Epoch 11, CIFAR-10 Batch 5:  Loss:     1.8538, Validation Accuracy: 0.279200
Epoch 12, CIFAR-10 Batch 1:  Loss:     1.9661, Validation Accuracy: 0.252800
Epoch 12, CIFAR-10 Batch 2:  Loss:     1.9318, Validation Accuracy: 0.273000
Epoch 12, CIFAR-10 Batch 3:  Loss:     1.6359, Validation Accuracy: 0.281600
Epoch 12, CIFAR-10 Batch 4:  Loss:     1.9111, Validation Accuracy: 0.286000
Epoch 12, CIFAR-10 Batch 5:  Loss:     1.8359, Validation Accuracy: 0.271800
Epoch 13, CIFAR-10 Batch 1:  Loss:     2.0103, Validation Accuracy: 0.247600
Epoch 13, CIFAR-10 Batch 2:  Loss:     1.8701, Validation Accuracy: 0.276600
Epoch 13, CIFAR-10 Batch 3:  Loss:     1.6271, Validation Accuracy: 0.288200
Epoch 13, CIFAR-10 Batch 4:  Loss:     1.9152, Validation Accuracy: 0.286800
Epoch 13, CIFAR-10 Batch 5:  Loss:     1.8154, Validation Accuracy: 0.286400
Epoch 14, CIFAR-10 Batch 1:  Loss:     1.9044, Validation Accuracy: 0.281200
Epoch 14, CIFAR-10 Batch 2:  Loss:     1.8892, Validation Accuracy: 0.287000
Epoch 14, CIFAR-10 Batch 3:  Loss:     1.6053, Validation Accuracy: 0.285800
Epoch 14, CIFAR-10 Batch 4:  Loss:     1.8937, Validation Accuracy: 0.301400
Epoch 14, CIFAR-10 Batch 5:  Loss:     1.7817, Validation Accuracy: 0.294600
Epoch 15, CIFAR-10 Batch 1:  Loss:     1.8801, Validation Accuracy: 0.287600
Epoch 15, CIFAR-10 Batch 2:  Loss:     1.8810, Validation Accuracy: 0.287400
Epoch 15, CIFAR-10 Batch 3:  Loss:     1.5946, Validation Accuracy: 0.289600
Epoch 15, CIFAR-10 Batch 4:  Loss:     1.9095, Validation Accuracy: 0.290000
Epoch 15, CIFAR-10 Batch 5:  Loss:     1.7839, Validation Accuracy: 0.290800
Epoch 16, CIFAR-10 Batch 1:  Loss:     1.8911, Validation Accuracy: 0.282000
Epoch 16, CIFAR-10 Batch 2:  Loss:     1.8729, Validation Accuracy: 0.299600
Epoch 16, CIFAR-10 Batch 3:  Loss:     1.5549, Validation Accuracy: 0.294400
Epoch 16, CIFAR-10 Batch 4:  Loss:     1.8680, Validation Accuracy: 0.303400
Epoch 16, CIFAR-10 Batch 5:  Loss:     1.7841, Validation Accuracy: 0.305800
Epoch 17, CIFAR-10 Batch 1:  Loss:     1.8732, Validation Accuracy: 0.272200
Epoch 17, CIFAR-10 Batch 2:  Loss:     1.8768, Validation Accuracy: 0.302000
Epoch 17, CIFAR-10 Batch 3:  Loss:     1.5430, Validation Accuracy: 0.302000
Epoch 17, CIFAR-10 Batch 4:  Loss:     1.8921, Validation Accuracy: 0.304200
Epoch 17, CIFAR-10 Batch 5:  Loss:     1.7318, Validation Accuracy: 0.312800
Epoch 18, CIFAR-10 Batch 1:  Loss:     1.8486, Validation Accuracy: 0.276400
Epoch 18, CIFAR-10 Batch 2:  Loss:     1.8293, Validation Accuracy: 0.303200
Epoch 18, CIFAR-10 Batch 3:  Loss:     1.5204, Validation Accuracy: 0.306600
Epoch 18, CIFAR-10 Batch 4:  Loss:     1.8758, Validation Accuracy: 0.305400
Epoch 18, CIFAR-10 Batch 5:  Loss:     1.7091, Validation Accuracy: 0.312800
Epoch 19, CIFAR-10 Batch 1:  Loss:     1.8087, Validation Accuracy: 0.310800
Epoch 19, CIFAR-10 Batch 2:  Loss:     1.8253, Validation Accuracy: 0.314400
Epoch 19, CIFAR-10 Batch 3:  Loss:     1.5006, Validation Accuracy: 0.325200
Epoch 19, CIFAR-10 Batch 4:  Loss:     1.8901, Validation Accuracy: 0.314400
Epoch 19, CIFAR-10 Batch 5:  Loss:     1.7004, Validation Accuracy: 0.326000
Epoch 20, CIFAR-10 Batch 1:  Loss:     1.8230, Validation Accuracy: 0.308400
Epoch 20, CIFAR-10 Batch 2:  Loss:     1.7787, Validation Accuracy: 0.335400
Epoch 20, CIFAR-10 Batch 3:  Loss:     1.4536, Validation Accuracy: 0.330000
Epoch 20, CIFAR-10 Batch 4:  Loss:     1.8206, Validation Accuracy: 0.332800
Epoch 20, CIFAR-10 Batch 5:  Loss:     1.6808, Validation Accuracy: 0.334000
Epoch 21, CIFAR-10 Batch 1:  Loss:     1.7445, Validation Accuracy: 0.338200
Epoch 21, CIFAR-10 Batch 2:  Loss:     1.7944, Validation Accuracy: 0.347800
Epoch 21, CIFAR-10 Batch 3:  Loss:     1.4333, Validation Accuracy: 0.356200
Epoch 21, CIFAR-10 Batch 4:  Loss:     1.7654, Validation Accuracy: 0.366800
Epoch 21, CIFAR-10 Batch 5:  Loss:     1.6737, Validation Accuracy: 0.349200
Epoch 22, CIFAR-10 Batch 1:  Loss:     1.6726, Validation Accuracy: 0.360600
Epoch 22, CIFAR-10 Batch 2:  Loss:     1.7036, Validation Accuracy: 0.357800
Epoch 22, CIFAR-10 Batch 3:  Loss:     1.4447, Validation Accuracy: 0.363800
Epoch 22, CIFAR-10 Batch 4:  Loss:     1.7458, Validation Accuracy: 0.379400
Epoch 22, CIFAR-10 Batch 5:  Loss:     1.6208, Validation Accuracy: 0.371400
Epoch 23, CIFAR-10 Batch 1:  Loss:     1.6768, Validation Accuracy: 0.363800
Epoch 23, CIFAR-10 Batch 2:  Loss:     1.6629, Validation Accuracy: 0.378400
Epoch 23, CIFAR-10 Batch 3:  Loss:     1.3515, Validation Accuracy: 0.387000
Epoch 23, CIFAR-10 Batch 4:  Loss:     1.7121, Validation Accuracy: 0.385000
Epoch 23, CIFAR-10 Batch 5:  Loss:     1.6140, Validation Accuracy: 0.395400
Epoch 24, CIFAR-10 Batch 1:  Loss:     1.5766, Validation Accuracy: 0.404800
Epoch 24, CIFAR-10 Batch 2:  Loss:     1.6495, Validation Accuracy: 0.394400
Epoch 24, CIFAR-10 Batch 3:  Loss:     1.3515, Validation Accuracy: 0.404800
Epoch 24, CIFAR-10 Batch 4:  Loss:     1.6846, Validation Accuracy: 0.401800
Epoch 24, CIFAR-10 Batch 5:  Loss:     1.5811, Validation Accuracy: 0.396600
Epoch 25, CIFAR-10 Batch 1:  Loss:     1.6143, Validation Accuracy: 0.397600
Epoch 25, CIFAR-10 Batch 2:  Loss:     1.6061, Validation Accuracy: 0.409200
Epoch 25, CIFAR-10 Batch 3:  Loss:     1.3411, Validation Accuracy: 0.400800
Epoch 25, CIFAR-10 Batch 4:  Loss:     1.6525, Validation Accuracy: 0.414000
Epoch 25, CIFAR-10 Batch 5:  Loss:     1.5028, Validation Accuracy: 0.399200
Epoch 26, CIFAR-10 Batch 1:  Loss:     1.5488, Validation Accuracy: 0.404000
Epoch 26, CIFAR-10 Batch 2:  Loss:     1.5904, Validation Accuracy: 0.424000
Epoch 26, CIFAR-10 Batch 3:  Loss:     1.3010, Validation Accuracy: 0.421000
Epoch 26, CIFAR-10 Batch 4:  Loss:     1.6268, Validation Accuracy: 0.421200
Epoch 26, CIFAR-10 Batch 5:  Loss:     1.4288, Validation Accuracy: 0.421200
Epoch 27, CIFAR-10 Batch 1:  Loss:     1.4680, Validation Accuracy: 0.424400
Epoch 27, CIFAR-10 Batch 2:  Loss:     1.5316, Validation Accuracy: 0.434800
Epoch 27, CIFAR-10 Batch 3:  Loss:     1.2860, Validation Accuracy: 0.411000
Epoch 27, CIFAR-10 Batch 4:  Loss:     1.6041, Validation Accuracy: 0.425400
Epoch 27, CIFAR-10 Batch 5:  Loss:     1.4631, Validation Accuracy: 0.427200
Epoch 28, CIFAR-10 Batch 1:  Loss:     1.4564, Validation Accuracy: 0.421400
Epoch 28, CIFAR-10 Batch 2:  Loss:     1.5023, Validation Accuracy: 0.436200
Epoch 28, CIFAR-10 Batch 3:  Loss:     1.2761, Validation Accuracy: 0.401800
Epoch 28, CIFAR-10 Batch 4:  Loss:     1.5513, Validation Accuracy: 0.438000
Epoch 28, CIFAR-10 Batch 5:  Loss:     1.3935, Validation Accuracy: 0.437800
Epoch 29, CIFAR-10 Batch 1:  Loss:     1.4391, Validation Accuracy: 0.409200
Epoch 29, CIFAR-10 Batch 2:  Loss:     1.4720, Validation Accuracy: 0.430200
Epoch 29, CIFAR-10 Batch 3:  Loss:     1.2341, Validation Accuracy: 0.429800
Epoch 29, CIFAR-10 Batch 4:  Loss:     1.5392, Validation Accuracy: 0.444000
Epoch 29, CIFAR-10 Batch 5:  Loss:     1.3705, Validation Accuracy: 0.434200
Epoch 30, CIFAR-10 Batch 1:  Loss:     1.4257, Validation Accuracy: 0.422000
Epoch 30, CIFAR-10 Batch 2:  Loss:     1.4297, Validation Accuracy: 0.447800
Epoch 30, CIFAR-10 Batch 3:  Loss:     1.2551, Validation Accuracy: 0.417600
Epoch 30, CIFAR-10 Batch 4:  Loss:     1.5572, Validation Accuracy: 0.444200
Epoch 30, CIFAR-10 Batch 5:  Loss:     1.3624, Validation Accuracy: 0.441000
Epoch 31, CIFAR-10 Batch 1:  Loss:     1.3538, Validation Accuracy: 0.435800
Epoch 31, CIFAR-10 Batch 2:  Loss:     1.4376, Validation Accuracy: 0.443800
Epoch 31, CIFAR-10 Batch 3:  Loss:     1.2141, Validation Accuracy: 0.444400
Epoch 31, CIFAR-10 Batch 4:  Loss:     1.5206, Validation Accuracy: 0.443000
Epoch 31, CIFAR-10 Batch 5:  Loss:     1.3388, Validation Accuracy: 0.451000
Epoch 32, CIFAR-10 Batch 1:  Loss:     1.3270, Validation Accuracy: 0.447400
Epoch 32, CIFAR-10 Batch 2:  Loss:     1.3905, Validation Accuracy: 0.444400
Epoch 32, CIFAR-10 Batch 3:  Loss:     1.2037, Validation Accuracy: 0.427200
Epoch 32, CIFAR-10 Batch 4:  Loss:     1.4872, Validation Accuracy: 0.447800
Epoch 32, CIFAR-10 Batch 5:  Loss:     1.3325, Validation Accuracy: 0.443600
Epoch 33, CIFAR-10 Batch 1:  Loss:     1.3924, Validation Accuracy: 0.420600
Epoch 33, CIFAR-10 Batch 2:  Loss:     1.3888, Validation Accuracy: 0.451200
Epoch 33, CIFAR-10 Batch 3:  Loss:     1.1780, Validation Accuracy: 0.453800
Epoch 33, CIFAR-10 Batch 4:  Loss:     1.4835, Validation Accuracy: 0.456600
Epoch 33, CIFAR-10 Batch 5:  Loss:     1.3149, Validation Accuracy: 0.447000
Epoch 34, CIFAR-10 Batch 1:  Loss:     1.3012, Validation Accuracy: 0.438600
Epoch 34, CIFAR-10 Batch 2:  Loss:     1.3288, Validation Accuracy: 0.450400
Epoch 34, CIFAR-10 Batch 3:  Loss:     1.2211, Validation Accuracy: 0.449400
Epoch 34, CIFAR-10 Batch 4:  Loss:     1.4382, Validation Accuracy: 0.459400
Epoch 34, CIFAR-10 Batch 5:  Loss:     1.2828, Validation Accuracy: 0.439400
Epoch 35, CIFAR-10 Batch 1:  Loss:     1.2778, Validation Accuracy: 0.446600
Epoch 35, CIFAR-10 Batch 2:  Loss:     1.3204, Validation Accuracy: 0.460000
Epoch 35, CIFAR-10 Batch 3:  Loss:     1.1471, Validation Accuracy: 0.458000
Epoch 35, CIFAR-10 Batch 4:  Loss:     1.4101, Validation Accuracy: 0.462600
Epoch 35, CIFAR-10 Batch 5:  Loss:     1.2633, Validation Accuracy: 0.460600
Epoch 36, CIFAR-10 Batch 1:  Loss:     1.2919, Validation Accuracy: 0.449400
Epoch 36, CIFAR-10 Batch 2:  Loss:     1.2851, Validation Accuracy: 0.459800
Epoch 36, CIFAR-10 Batch 3:  Loss:     1.1347, Validation Accuracy: 0.460800
Epoch 36, CIFAR-10 Batch 4:  Loss:     1.4359, Validation Accuracy: 0.462200
Epoch 36, CIFAR-10 Batch 5:  Loss:     1.2414, Validation Accuracy: 0.450400
Epoch 37, CIFAR-10 Batch 1:  Loss:     1.2752, Validation Accuracy: 0.443600
Epoch 37, CIFAR-10 Batch 2:  Loss:     1.3477, Validation Accuracy: 0.459800
Epoch 37, CIFAR-10 Batch 3:  Loss:     1.1560, Validation Accuracy: 0.453400
Epoch 37, CIFAR-10 Batch 4:  Loss:     1.4092, Validation Accuracy: 0.459600
Epoch 37, CIFAR-10 Batch 5:  Loss:     1.2485, Validation Accuracy: 0.457800
Epoch 38, CIFAR-10 Batch 1:  Loss:     1.2133, Validation Accuracy: 0.461600
Epoch 38, CIFAR-10 Batch 2:  Loss:     1.2551, Validation Accuracy: 0.463600
Epoch 38, CIFAR-10 Batch 3:  Loss:     1.1513, Validation Accuracy: 0.460600
Epoch 38, CIFAR-10 Batch 4:  Loss:     1.3724, Validation Accuracy: 0.468800
Epoch 38, CIFAR-10 Batch 5:  Loss:     1.2241, Validation Accuracy: 0.455600
Epoch 39, CIFAR-10 Batch 1:  Loss:     1.2049, Validation Accuracy: 0.459400
Epoch 39, CIFAR-10 Batch 2:  Loss:     1.2410, Validation Accuracy: 0.472600
Epoch 39, CIFAR-10 Batch 3:  Loss:     1.1220, Validation Accuracy: 0.467000
Epoch 39, CIFAR-10 Batch 4:  Loss:     1.4265, Validation Accuracy: 0.452800
Epoch 39, CIFAR-10 Batch 5:  Loss:     1.2392, Validation Accuracy: 0.466200
Epoch 40, CIFAR-10 Batch 1:  Loss:     1.2075, Validation Accuracy: 0.465400
Epoch 40, CIFAR-10 Batch 2:  Loss:     1.2673, Validation Accuracy: 0.472600
Epoch 40, CIFAR-10 Batch 3:  Loss:     1.1227, Validation Accuracy: 0.479600
Epoch 40, CIFAR-10 Batch 4:  Loss:     1.3508, Validation Accuracy: 0.468800
Epoch 40, CIFAR-10 Batch 5:  Loss:     1.2428, Validation Accuracy: 0.465600
Epoch 41, CIFAR-10 Batch 1:  Loss:     1.1891, Validation Accuracy: 0.466000
Epoch 41, CIFAR-10 Batch 2:  Loss:     1.2198, Validation Accuracy: 0.479400
Epoch 41, CIFAR-10 Batch 3:  Loss:     1.1199, Validation Accuracy: 0.476400
Epoch 41, CIFAR-10 Batch 4:  Loss:     1.3908, Validation Accuracy: 0.458000
Epoch 41, CIFAR-10 Batch 5:  Loss:     1.2578, Validation Accuracy: 0.462600
Epoch 42, CIFAR-10 Batch 1:  Loss:     1.1591, Validation Accuracy: 0.454200
Epoch 42, CIFAR-10 Batch 2:  Loss:     1.1965, Validation Accuracy: 0.478200
Epoch 42, CIFAR-10 Batch 3:  Loss:     1.1417, Validation Accuracy: 0.455200
Epoch 42, CIFAR-10 Batch 4:  Loss:     1.3473, Validation Accuracy: 0.474200
Epoch 42, CIFAR-10 Batch 5:  Loss:     1.1911, Validation Accuracy: 0.471800
Epoch 43, CIFAR-10 Batch 1:  Loss:     1.1837, Validation Accuracy: 0.442400
Epoch 43, CIFAR-10 Batch 2:  Loss:     1.2151, Validation Accuracy: 0.480200
Epoch 43, CIFAR-10 Batch 3:  Loss:     1.1165, Validation Accuracy: 0.476000
Epoch 43, CIFAR-10 Batch 4:  Loss:     1.3533, Validation Accuracy: 0.473800
Epoch 43, CIFAR-10 Batch 5:  Loss:     1.1840, Validation Accuracy: 0.473400
Epoch 44, CIFAR-10 Batch 1:  Loss:     1.1391, Validation Accuracy: 0.453000
Epoch 44, CIFAR-10 Batch 2:  Loss:     1.2203, Validation Accuracy: 0.467200
Epoch 44, CIFAR-10 Batch 3:  Loss:     1.1060, Validation Accuracy: 0.479400
Epoch 44, CIFAR-10 Batch 4:  Loss:     1.3557, Validation Accuracy: 0.465000
Epoch 44, CIFAR-10 Batch 5:  Loss:     1.1642, Validation Accuracy: 0.474000
Epoch 45, CIFAR-10 Batch 1:  Loss:     1.1154, Validation Accuracy: 0.470600
Epoch 45, CIFAR-10 Batch 2:  Loss:     1.1712, Validation Accuracy: 0.484400
Epoch 45, CIFAR-10 Batch 3:  Loss:     1.0984, Validation Accuracy: 0.484000
Epoch 45, CIFAR-10 Batch 4:  Loss:     1.3094, Validation Accuracy: 0.482600
Epoch 45, CIFAR-10 Batch 5:  Loss:     1.1862, Validation Accuracy: 0.461400
Epoch 46, CIFAR-10 Batch 1:  Loss:     1.0855, Validation Accuracy: 0.483600
Epoch 46, CIFAR-10 Batch 2:  Loss:     1.1303, Validation Accuracy: 0.488000
Epoch 46, CIFAR-10 Batch 3:  Loss:     1.1060, Validation Accuracy: 0.490000
Epoch 46, CIFAR-10 Batch 4:  Loss:     1.3352, Validation Accuracy: 0.470000
Epoch 46, CIFAR-10 Batch 5:  Loss:     1.1926, Validation Accuracy: 0.473600
Epoch 47, CIFAR-10 Batch 1:  Loss:     1.1240, Validation Accuracy: 0.474000
Epoch 47, CIFAR-10 Batch 2:  Loss:     1.1247, Validation Accuracy: 0.489600
Epoch 47, CIFAR-10 Batch 3:  Loss:     1.0654, Validation Accuracy: 0.492800
Epoch 47, CIFAR-10 Batch 4:  Loss:     1.2903, Validation Accuracy: 0.489800
Epoch 47, CIFAR-10 Batch 5:  Loss:     1.1410, Validation Accuracy: 0.489200
Epoch 48, CIFAR-10 Batch 1:  Loss:     1.1297, Validation Accuracy: 0.473800
Epoch 48, CIFAR-10 Batch 2:  Loss:     1.1432, Validation Accuracy: 0.495400
Epoch 48, CIFAR-10 Batch 3:  Loss:     1.0809, Validation Accuracy: 0.492000
Epoch 48, CIFAR-10 Batch 4:  Loss:     1.3222, Validation Accuracy: 0.474600
Epoch 48, CIFAR-10 Batch 5:  Loss:     1.1531, Validation Accuracy: 0.492800
Epoch 49, CIFAR-10 Batch 1:  Loss:     1.1154, Validation Accuracy: 0.489200
Epoch 49, CIFAR-10 Batch 2:  Loss:     1.1464, Validation Accuracy: 0.502200
Epoch 49, CIFAR-10 Batch 3:  Loss:     1.0495, Validation Accuracy: 0.492800
Epoch 49, CIFAR-10 Batch 4:  Loss:     1.2796, Validation Accuracy: 0.495400
Epoch 49, CIFAR-10 Batch 5:  Loss:     1.1233, Validation Accuracy: 0.491400
Epoch 50, CIFAR-10 Batch 1:  Loss:     1.0678, Validation Accuracy: 0.491600
Epoch 50, CIFAR-10 Batch 2:  Loss:     1.1032, Validation Accuracy: 0.505600
Epoch 50, CIFAR-10 Batch 3:  Loss:     1.0816, Validation Accuracy: 0.497800
Epoch 50, CIFAR-10 Batch 4:  Loss:     1.2706, Validation Accuracy: 0.491200
Epoch 50, CIFAR-10 Batch 5:  Loss:     1.1146, Validation Accuracy: 0.488800
Epoch 51, CIFAR-10 Batch 1:  Loss:     1.0672, Validation Accuracy: 0.474600
Epoch 51, CIFAR-10 Batch 2:  Loss:     1.1049, Validation Accuracy: 0.502800
Epoch 51, CIFAR-10 Batch 3:  Loss:     1.0248, Validation Accuracy: 0.504400
Epoch 51, CIFAR-10 Batch 4:  Loss:     1.2715, Validation Accuracy: 0.507800
Epoch 51, CIFAR-10 Batch 5:  Loss:     1.1337, Validation Accuracy: 0.495400
Epoch 52, CIFAR-10 Batch 1:  Loss:     1.0858, Validation Accuracy: 0.506600
Epoch 52, CIFAR-10 Batch 2:  Loss:     1.0949, Validation Accuracy: 0.505000
Epoch 52, CIFAR-10 Batch 3:  Loss:     1.0622, Validation Accuracy: 0.496200
Epoch 52, CIFAR-10 Batch 4:  Loss:     1.2517, Validation Accuracy: 0.492200
Epoch 52, CIFAR-10 Batch 5:  Loss:     1.1340, Validation Accuracy: 0.475600
Epoch 53, CIFAR-10 Batch 1:  Loss:     1.1139, Validation Accuracy: 0.486800
Epoch 53, CIFAR-10 Batch 2:  Loss:     1.1069, Validation Accuracy: 0.502200
Epoch 53, CIFAR-10 Batch 3:  Loss:     1.0474, Validation Accuracy: 0.503600
Epoch 53, CIFAR-10 Batch 4:  Loss:     1.2168, Validation Accuracy: 0.506400
Epoch 53, CIFAR-10 Batch 5:  Loss:     1.1250, Validation Accuracy: 0.504800
Epoch 54, CIFAR-10 Batch 1:  Loss:     1.0871, Validation Accuracy: 0.505000
Epoch 54, CIFAR-10 Batch 2:  Loss:     1.0957, Validation Accuracy: 0.510800
Epoch 54, CIFAR-10 Batch 3:  Loss:     1.0242, Validation Accuracy: 0.504000
Epoch 54, CIFAR-10 Batch 4:  Loss:     1.2049, Validation Accuracy: 0.499000
Epoch 54, CIFAR-10 Batch 5:  Loss:     1.1224, Validation Accuracy: 0.498600
Epoch 55, CIFAR-10 Batch 1:  Loss:     1.1158, Validation Accuracy: 0.499400
Epoch 55, CIFAR-10 Batch 2:  Loss:     1.1149, Validation Accuracy: 0.497400
Epoch 55, CIFAR-10 Batch 3:  Loss:     1.0054, Validation Accuracy: 0.498600
Epoch 55, CIFAR-10 Batch 4:  Loss:     1.2087, Validation Accuracy: 0.500800
Epoch 55, CIFAR-10 Batch 5:  Loss:     1.0968, Validation Accuracy: 0.505600
Epoch 56, CIFAR-10 Batch 1:  Loss:     1.1017, Validation Accuracy: 0.502400
Epoch 56, CIFAR-10 Batch 2:  Loss:     1.0977, Validation Accuracy: 0.510400
Epoch 56, CIFAR-10 Batch 3:  Loss:     1.0199, Validation Accuracy: 0.512200
Epoch 56, CIFAR-10 Batch 4:  Loss:     1.1747, Validation Accuracy: 0.511200
Epoch 56, CIFAR-10 Batch 5:  Loss:     1.0937, Validation Accuracy: 0.501200
Epoch 57, CIFAR-10 Batch 1:  Loss:     1.0679, Validation Accuracy: 0.487800
Epoch 57, CIFAR-10 Batch 2:  Loss:     1.0877, Validation Accuracy: 0.509400
Epoch 57, CIFAR-10 Batch 3:  Loss:     1.0098, Validation Accuracy: 0.504400
Epoch 57, CIFAR-10 Batch 4:  Loss:     1.1478, Validation Accuracy: 0.507200
Epoch 57, CIFAR-10 Batch 5:  Loss:     1.0981, Validation Accuracy: 0.492400
Epoch 58, CIFAR-10 Batch 1:  Loss:     1.0514, Validation Accuracy: 0.496400
Epoch 58, CIFAR-10 Batch 2:  Loss:     1.0728, Validation Accuracy: 0.513400
Epoch 58, CIFAR-10 Batch 3:  Loss:     1.0274, Validation Accuracy: 0.509600
Epoch 58, CIFAR-10 Batch 4:  Loss:     1.1756, Validation Accuracy: 0.505000
Epoch 58, CIFAR-10 Batch 5:  Loss:     1.0554, Validation Accuracy: 0.503600
Epoch 59, CIFAR-10 Batch 1:  Loss:     1.0519, Validation Accuracy: 0.493400
Epoch 59, CIFAR-10 Batch 2:  Loss:     1.0425, Validation Accuracy: 0.515800
Epoch 59, CIFAR-10 Batch 3:  Loss:     1.0061, Validation Accuracy: 0.524800
Epoch 59, CIFAR-10 Batch 4:  Loss:     1.1754, Validation Accuracy: 0.504200
Epoch 59, CIFAR-10 Batch 5:  Loss:     1.0500, Validation Accuracy: 0.506400
Epoch 60, CIFAR-10 Batch 1:  Loss:     1.0370, Validation Accuracy: 0.511400
Epoch 60, CIFAR-10 Batch 2:  Loss:     1.0412, Validation Accuracy: 0.516600
Epoch 60, CIFAR-10 Batch 3:  Loss:     0.9950, Validation Accuracy: 0.520400
Epoch 60, CIFAR-10 Batch 4:  Loss:     1.1432, Validation Accuracy: 0.498800
Epoch 60, CIFAR-10 Batch 5:  Loss:     1.0836, Validation Accuracy: 0.494800
Epoch 61, CIFAR-10 Batch 1:  Loss:     1.0662, Validation Accuracy: 0.489800
Epoch 61, CIFAR-10 Batch 2:  Loss:     1.0743, Validation Accuracy: 0.510400
Epoch 61, CIFAR-10 Batch 3:  Loss:     1.0287, Validation Accuracy: 0.511600
Epoch 61, CIFAR-10 Batch 4:  Loss:     1.1397, Validation Accuracy: 0.512600
Epoch 61, CIFAR-10 Batch 5:  Loss:     1.0739, Validation Accuracy: 0.511200
Epoch 62, CIFAR-10 Batch 1:  Loss:     1.0518, Validation Accuracy: 0.497000
Epoch 62, CIFAR-10 Batch 2:  Loss:     1.0781, Validation Accuracy: 0.511000
Epoch 62, CIFAR-10 Batch 3:  Loss:     0.9853, Validation Accuracy: 0.523200
Epoch 62, CIFAR-10 Batch 4:  Loss:     1.1429, Validation Accuracy: 0.504200
Epoch 62, CIFAR-10 Batch 5:  Loss:     1.0541, Validation Accuracy: 0.507600
Epoch 63, CIFAR-10 Batch 1:  Loss:     1.0550, Validation Accuracy: 0.494200
Epoch 63, CIFAR-10 Batch 2:  Loss:     1.0488, Validation Accuracy: 0.510800
Epoch 63, CIFAR-10 Batch 3:  Loss:     1.0499, Validation Accuracy: 0.518800
Epoch 63, CIFAR-10 Batch 4:  Loss:     1.1307, Validation Accuracy: 0.501200
Epoch 63, CIFAR-10 Batch 5:  Loss:     1.0627, Validation Accuracy: 0.506800
Epoch 64, CIFAR-10 Batch 1:  Loss:     1.0285, Validation Accuracy: 0.513800
Epoch 64, CIFAR-10 Batch 2:  Loss:     1.0364, Validation Accuracy: 0.526600
Epoch 64, CIFAR-10 Batch 3:  Loss:     0.9692, Validation Accuracy: 0.517400
Epoch 64, CIFAR-10 Batch 4:  Loss:     1.1101, Validation Accuracy: 0.513200
Epoch 64, CIFAR-10 Batch 5:  Loss:     1.0461, Validation Accuracy: 0.513400
Epoch 65, CIFAR-10 Batch 1:  Loss:     1.0107, Validation Accuracy: 0.514400
Epoch 65, CIFAR-10 Batch 2:  Loss:     1.0648, Validation Accuracy: 0.522400
Epoch 65, CIFAR-10 Batch 3:  Loss:     0.9741, Validation Accuracy: 0.521400
Epoch 65, CIFAR-10 Batch 4:  Loss:     1.1216, Validation Accuracy: 0.518600
Epoch 65, CIFAR-10 Batch 5:  Loss:     1.0535, Validation Accuracy: 0.503400
Epoch 66, CIFAR-10 Batch 1:  Loss:     0.9871, Validation Accuracy: 0.520800
Epoch 66, CIFAR-10 Batch 2:  Loss:     1.0655, Validation Accuracy: 0.526200
Epoch 66, CIFAR-10 Batch 3:  Loss:     0.9734, Validation Accuracy: 0.523400
Epoch 66, CIFAR-10 Batch 4:  Loss:     1.1330, Validation Accuracy: 0.500600
Epoch 66, CIFAR-10 Batch 5:  Loss:     1.0702, Validation Accuracy: 0.513800
Epoch 67, CIFAR-10 Batch 1:  Loss:     1.0277, Validation Accuracy: 0.503400
Epoch 67, CIFAR-10 Batch 2:  Loss:     1.0751, Validation Accuracy: 0.512800
Epoch 67, CIFAR-10 Batch 3:  Loss:     0.9830, Validation Accuracy: 0.527000
Epoch 67, CIFAR-10 Batch 4:  Loss:     1.1301, Validation Accuracy: 0.516400
Epoch 67, CIFAR-10 Batch 5:  Loss:     1.0469, Validation Accuracy: 0.525000
Epoch 68, CIFAR-10 Batch 1:  Loss:     0.9900, Validation Accuracy: 0.518800
Epoch 68, CIFAR-10 Batch 2:  Loss:     1.0258, Validation Accuracy: 0.522600
Epoch 68, CIFAR-10 Batch 3:  Loss:     0.9459, Validation Accuracy: 0.530000
Epoch 68, CIFAR-10 Batch 4:  Loss:     1.0783, Validation Accuracy: 0.519600
Epoch 68, CIFAR-10 Batch 5:  Loss:     1.0253, Validation Accuracy: 0.534400
Epoch 69, CIFAR-10 Batch 1:  Loss:     1.0128, Validation Accuracy: 0.523600
Epoch 69, CIFAR-10 Batch 2:  Loss:     1.0287, Validation Accuracy: 0.524200
Epoch 69, CIFAR-10 Batch 3:  Loss:     0.9686, Validation Accuracy: 0.530600
Epoch 69, CIFAR-10 Batch 4:  Loss:     1.0920, Validation Accuracy: 0.527800
Epoch 69, CIFAR-10 Batch 5:  Loss:     1.0240, Validation Accuracy: 0.522200
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.9803, Validation Accuracy: 0.535800
Epoch 70, CIFAR-10 Batch 2:  Loss:     1.0104, Validation Accuracy: 0.541800
Epoch 70, CIFAR-10 Batch 3:  Loss:     0.9321, Validation Accuracy: 0.539200
Epoch 70, CIFAR-10 Batch 4:  Loss:     1.0546, Validation Accuracy: 0.536600
Epoch 70, CIFAR-10 Batch 5:  Loss:     1.0129, Validation Accuracy: 0.523000
Epoch 71, CIFAR-10 Batch 1:  Loss:     0.9566, Validation Accuracy: 0.531400
Epoch 71, CIFAR-10 Batch 2:  Loss:     1.0056, Validation Accuracy: 0.534000
Epoch 71, CIFAR-10 Batch 3:  Loss:     0.9927, Validation Accuracy: 0.516000
Epoch 71, CIFAR-10 Batch 4:  Loss:     1.0456, Validation Accuracy: 0.520200
Epoch 71, CIFAR-10 Batch 5:  Loss:     1.0059, Validation Accuracy: 0.518800
Epoch 72, CIFAR-10 Batch 1:  Loss:     0.9777, Validation Accuracy: 0.528000
Epoch 72, CIFAR-10 Batch 2:  Loss:     1.0520, Validation Accuracy: 0.527200
Epoch 72, CIFAR-10 Batch 3:  Loss:     0.9303, Validation Accuracy: 0.527600
Epoch 72, CIFAR-10 Batch 4:  Loss:     1.0411, Validation Accuracy: 0.522200
Epoch 72, CIFAR-10 Batch 5:  Loss:     0.9997, Validation Accuracy: 0.514800
Epoch 73, CIFAR-10 Batch 1:  Loss:     0.9737, Validation Accuracy: 0.524000
Epoch 73, CIFAR-10 Batch 2:  Loss:     1.0308, Validation Accuracy: 0.527800
Epoch 73, CIFAR-10 Batch 3:  Loss:     0.9370, Validation Accuracy: 0.538200
Epoch 73, CIFAR-10 Batch 4:  Loss:     1.0733, Validation Accuracy: 0.533200
Epoch 73, CIFAR-10 Batch 5:  Loss:     0.9908, Validation Accuracy: 0.529200
Epoch 74, CIFAR-10 Batch 1:  Loss:     0.9810, Validation Accuracy: 0.537000
Epoch 74, CIFAR-10 Batch 2:  Loss:     1.0340, Validation Accuracy: 0.523000
Epoch 74, CIFAR-10 Batch 3:  Loss:     0.9701, Validation Accuracy: 0.529600
Epoch 74, CIFAR-10 Batch 4:  Loss:     1.0484, Validation Accuracy: 0.522400
Epoch 74, CIFAR-10 Batch 5:  Loss:     0.9981, Validation Accuracy: 0.526600
Epoch 75, CIFAR-10 Batch 1:  Loss:     0.9881, Validation Accuracy: 0.524800
Epoch 75, CIFAR-10 Batch 2:  Loss:     1.0245, Validation Accuracy: 0.530000
Epoch 75, CIFAR-10 Batch 3:  Loss:     0.9738, Validation Accuracy: 0.527600
Epoch 75, CIFAR-10 Batch 4:  Loss:     1.0215, Validation Accuracy: 0.536200
Epoch 75, CIFAR-10 Batch 5:  Loss:     1.0192, Validation Accuracy: 0.529000
Epoch 76, CIFAR-10 Batch 1:  Loss:     1.0276, Validation Accuracy: 0.512000
Epoch 76, CIFAR-10 Batch 2:  Loss:     1.0588, Validation Accuracy: 0.512400
Epoch 76, CIFAR-10 Batch 3:  Loss:     0.9521, Validation Accuracy: 0.533200
Epoch 76, CIFAR-10 Batch 4:  Loss:     1.0712, Validation Accuracy: 0.517400
Epoch 76, CIFAR-10 Batch 5:  Loss:     1.0106, Validation Accuracy: 0.527600
Epoch 77, CIFAR-10 Batch 1:  Loss:     0.9953, Validation Accuracy: 0.527200
Epoch 77, CIFAR-10 Batch 2:  Loss:     1.0264, Validation Accuracy: 0.510200
Epoch 77, CIFAR-10 Batch 3:  Loss:     0.9384, Validation Accuracy: 0.538600
Epoch 77, CIFAR-10 Batch 4:  Loss:     1.0584, Validation Accuracy: 0.531200
Epoch 77, CIFAR-10 Batch 5:  Loss:     1.0387, Validation Accuracy: 0.525000
Epoch 78, CIFAR-10 Batch 1:  Loss:     0.9985, Validation Accuracy: 0.525400
Epoch 78, CIFAR-10 Batch 2:  Loss:     1.0201, Validation Accuracy: 0.537400
Epoch 78, CIFAR-10 Batch 3:  Loss:     0.9536, Validation Accuracy: 0.528400
Epoch 78, CIFAR-10 Batch 4:  Loss:     1.0387, Validation Accuracy: 0.524000
Epoch 78, CIFAR-10 Batch 5:  Loss:     1.0190, Validation Accuracy: 0.536200
Epoch 79, CIFAR-10 Batch 1:  Loss:     0.9890, Validation Accuracy: 0.535200
Epoch 79, CIFAR-10 Batch 2:  Loss:     1.0038, Validation Accuracy: 0.541000
Epoch 79, CIFAR-10 Batch 3:  Loss:     0.9853, Validation Accuracy: 0.534400
Epoch 79, CIFAR-10 Batch 4:  Loss:     1.0350, Validation Accuracy: 0.537000
Epoch 79, CIFAR-10 Batch 5:  Loss:     1.0048, Validation Accuracy: 0.537600
Epoch 80, CIFAR-10 Batch 1:  Loss:     0.9742, Validation Accuracy: 0.542400
Epoch 80, CIFAR-10 Batch 2:  Loss:     1.0000, Validation Accuracy: 0.532800
Epoch 80, CIFAR-10 Batch 3:  Loss:     0.9803, Validation Accuracy: 0.533400
Epoch 80, CIFAR-10 Batch 4:  Loss:     1.0514, Validation Accuracy: 0.543400
Epoch 80, CIFAR-10 Batch 5:  Loss:     1.0374, Validation Accuracy: 0.519200
Epoch 81, CIFAR-10 Batch 1:  Loss:     0.9881, Validation Accuracy: 0.523000
Epoch 81, CIFAR-10 Batch 2:  Loss:     1.0316, Validation Accuracy: 0.533400
Epoch 81, CIFAR-10 Batch 3:  Loss:     0.9407, Validation Accuracy: 0.540600
Epoch 81, CIFAR-10 Batch 4:  Loss:     1.0473, Validation Accuracy: 0.522400
Epoch 81, CIFAR-10 Batch 5:  Loss:     0.9931, Validation Accuracy: 0.526000
Epoch 82, CIFAR-10 Batch 1:  Loss:     0.9770, Validation Accuracy: 0.543600
Epoch 82, CIFAR-10 Batch 2:  Loss:     0.9918, Validation Accuracy: 0.535000
Epoch 82, CIFAR-10 Batch 3:  Loss:     0.9128, Validation Accuracy: 0.531000
Epoch 82, CIFAR-10 Batch 4:  Loss:     1.0294, Validation Accuracy: 0.530800
Epoch 82, CIFAR-10 Batch 5:  Loss:     0.9944, Validation Accuracy: 0.541400
Epoch 83, CIFAR-10 Batch 1:  Loss:     0.9511, Validation Accuracy: 0.537000
Epoch 83, CIFAR-10 Batch 2:  Loss:     0.9836, Validation Accuracy: 0.533400
Epoch 83, CIFAR-10 Batch 3:  Loss:     0.9262, Validation Accuracy: 0.543600
Epoch 83, CIFAR-10 Batch 4:  Loss:     1.0178, Validation Accuracy: 0.537600
Epoch 83, CIFAR-10 Batch 5:  Loss:     1.0075, Validation Accuracy: 0.530400
Epoch 84, CIFAR-10 Batch 1:  Loss:     1.0055, Validation Accuracy: 0.545200
Epoch 84, CIFAR-10 Batch 2:  Loss:     0.9849, Validation Accuracy: 0.538600
Epoch 84, CIFAR-10 Batch 3:  Loss:     0.9103, Validation Accuracy: 0.543600
Epoch 84, CIFAR-10 Batch 4:  Loss:     1.0088, Validation Accuracy: 0.536400
Epoch 84, CIFAR-10 Batch 5:  Loss:     1.0153, Validation Accuracy: 0.544000
Epoch 85, CIFAR-10 Batch 1:  Loss:     0.9417, Validation Accuracy: 0.542200
Epoch 85, CIFAR-10 Batch 2:  Loss:     0.9941, Validation Accuracy: 0.531800
Epoch 85, CIFAR-10 Batch 3:  Loss:     0.9181, Validation Accuracy: 0.552600
Epoch 85, CIFAR-10 Batch 4:  Loss:     1.0067, Validation Accuracy: 0.542000
Epoch 85, CIFAR-10 Batch 5:  Loss:     0.9984, Validation Accuracy: 0.542200
Epoch 86, CIFAR-10 Batch 1:  Loss:     0.9366, Validation Accuracy: 0.547800
Epoch 86, CIFAR-10 Batch 2:  Loss:     0.9781, Validation Accuracy: 0.551200
Epoch 86, CIFAR-10 Batch 3:  Loss:     0.9201, Validation Accuracy: 0.546200
Epoch 86, CIFAR-10 Batch 4:  Loss:     0.9687, Validation Accuracy: 0.542600
Epoch 86, CIFAR-10 Batch 5:  Loss:     1.0145, Validation Accuracy: 0.535000
Epoch 87, CIFAR-10 Batch 1:  Loss:     0.9455, Validation Accuracy: 0.544200
Epoch 87, CIFAR-10 Batch 2:  Loss:     0.9627, Validation Accuracy: 0.526400
Epoch 87, CIFAR-10 Batch 3:  Loss:     0.9322, Validation Accuracy: 0.545600
Epoch 87, CIFAR-10 Batch 4:  Loss:     0.9857, Validation Accuracy: 0.540600
Epoch 87, CIFAR-10 Batch 5:  Loss:     0.9990, Validation Accuracy: 0.546200
Epoch 88, CIFAR-10 Batch 1:  Loss:     0.9550, Validation Accuracy: 0.537200
Epoch 88, CIFAR-10 Batch 2:  Loss:     0.9640, Validation Accuracy: 0.551800
Epoch 88, CIFAR-10 Batch 3:  Loss:     0.8925, Validation Accuracy: 0.549200
Epoch 88, CIFAR-10 Batch 4:  Loss:     0.9903, Validation Accuracy: 0.542400
Epoch 88, CIFAR-10 Batch 5:  Loss:     0.9868, Validation Accuracy: 0.540800
Epoch 89, CIFAR-10 Batch 1:  Loss:     0.9519, Validation Accuracy: 0.543200
Epoch 89, CIFAR-10 Batch 2:  Loss:     1.0014, Validation Accuracy: 0.535400
Epoch 89, CIFAR-10 Batch 3:  Loss:     0.8822, Validation Accuracy: 0.547200
Epoch 89, CIFAR-10 Batch 4:  Loss:     0.9700, Validation Accuracy: 0.546000
Epoch 89, CIFAR-10 Batch 5:  Loss:     0.9615, Validation Accuracy: 0.550800
Epoch 90, CIFAR-10 Batch 1:  Loss:     0.9462, Validation Accuracy: 0.551800
Epoch 90, CIFAR-10 Batch 2:  Loss:     0.9668, Validation Accuracy: 0.550600
Epoch 90, CIFAR-10 Batch 3:  Loss:     0.8996, Validation Accuracy: 0.550000
Epoch 90, CIFAR-10 Batch 4:  Loss:     0.9700, Validation Accuracy: 0.547400
Epoch 90, CIFAR-10 Batch 5:  Loss:     0.9903, Validation Accuracy: 0.543000
Epoch 91, CIFAR-10 Batch 1:  Loss:     0.9509, Validation Accuracy: 0.545000
Epoch 91, CIFAR-10 Batch 2:  Loss:     0.9729, Validation Accuracy: 0.541800
Epoch 91, CIFAR-10 Batch 3:  Loss:     0.9096, Validation Accuracy: 0.544000
Epoch 91, CIFAR-10 Batch 4:  Loss:     0.9801, Validation Accuracy: 0.540600
Epoch 91, CIFAR-10 Batch 5:  Loss:     1.0364, Validation Accuracy: 0.542200
Epoch 92, CIFAR-10 Batch 1:  Loss:     0.9656, Validation Accuracy: 0.532200
Epoch 92, CIFAR-10 Batch 2:  Loss:     0.9771, Validation Accuracy: 0.545800
Epoch 92, CIFAR-10 Batch 3:  Loss:     0.9017, Validation Accuracy: 0.544400
Epoch 92, CIFAR-10 Batch 4:  Loss:     0.9753, Validation Accuracy: 0.550400
Epoch 92, CIFAR-10 Batch 5:  Loss:     0.9852, Validation Accuracy: 0.542800
Epoch 93, CIFAR-10 Batch 1:  Loss:     0.9667, Validation Accuracy: 0.547600
Epoch 93, CIFAR-10 Batch 2:  Loss:     0.9453, Validation Accuracy: 0.556800
Epoch 93, CIFAR-10 Batch 3:  Loss:     0.9032, Validation Accuracy: 0.552600
Epoch 93, CIFAR-10 Batch 4:  Loss:     0.9545, Validation Accuracy: 0.549200
Epoch 93, CIFAR-10 Batch 5:  Loss:     0.9898, Validation Accuracy: 0.547400
Epoch 94, CIFAR-10 Batch 1:  Loss:     0.9857, Validation Accuracy: 0.543600
Epoch 94, CIFAR-10 Batch 2:  Loss:     0.9917, Validation Accuracy: 0.549200
Epoch 94, CIFAR-10 Batch 3:  Loss:     0.8818, Validation Accuracy: 0.551000
Epoch 94, CIFAR-10 Batch 4:  Loss:     0.9718, Validation Accuracy: 0.554200
Epoch 94, CIFAR-10 Batch 5:  Loss:     0.9737, Validation Accuracy: 0.549400
Epoch 95, CIFAR-10 Batch 1:  Loss:     0.9409, Validation Accuracy: 0.556200
Epoch 95, CIFAR-10 Batch 2:  Loss:     0.9513, Validation Accuracy: 0.552400
Epoch 95, CIFAR-10 Batch 3:  Loss:     0.8650, Validation Accuracy: 0.567800
Epoch 95, CIFAR-10 Batch 4:  Loss:     0.9850, Validation Accuracy: 0.554800
Epoch 95, CIFAR-10 Batch 5:  Loss:     0.9871, Validation Accuracy: 0.552800
Epoch 96, CIFAR-10 Batch 1:  Loss:     0.9663, Validation Accuracy: 0.530400
Epoch 96, CIFAR-10 Batch 2:  Loss:     0.9963, Validation Accuracy: 0.549600
Epoch 96, CIFAR-10 Batch 3:  Loss:     0.8527, Validation Accuracy: 0.554800
Epoch 96, CIFAR-10 Batch 4:  Loss:     0.9678, Validation Accuracy: 0.526600
Epoch 96, CIFAR-10 Batch 5:  Loss:     0.9886, Validation Accuracy: 0.545800
Epoch 97, CIFAR-10 Batch 1:  Loss:     1.0020, Validation Accuracy: 0.541000
Epoch 97, CIFAR-10 Batch 2:  Loss:     0.9376, Validation Accuracy: 0.549200
Epoch 97, CIFAR-10 Batch 3:  Loss:     0.8616, Validation Accuracy: 0.558400
Epoch 97, CIFAR-10 Batch 4:  Loss:     0.9941, Validation Accuracy: 0.537800
Epoch 97, CIFAR-10 Batch 5:  Loss:     0.9849, Validation Accuracy: 0.547400
Epoch 98, CIFAR-10 Batch 1:  Loss:     0.9155, Validation Accuracy: 0.557600
Epoch 98, CIFAR-10 Batch 2:  Loss:     0.9256, Validation Accuracy: 0.558400
Epoch 98, CIFAR-10 Batch 3:  Loss:     0.8389, Validation Accuracy: 0.558000
Epoch 98, CIFAR-10 Batch 4:  Loss:     0.9584, Validation Accuracy: 0.550600
Epoch 98, CIFAR-10 Batch 5:  Loss:     1.0014, Validation Accuracy: 0.533400
Epoch 99, CIFAR-10 Batch 1:  Loss:     0.9680, Validation Accuracy: 0.548000
Epoch 99, CIFAR-10 Batch 2:  Loss:     0.9352, Validation Accuracy: 0.562200
Epoch 99, CIFAR-10 Batch 3:  Loss:     0.8534, Validation Accuracy: 0.547600
Epoch 99, CIFAR-10 Batch 4:  Loss:     0.9848, Validation Accuracy: 0.546600
Epoch 99, CIFAR-10 Batch 5:  Loss:     1.0181, Validation Accuracy: 0.541000
Epoch 100, CIFAR-10 Batch 1:  Loss:     0.9820, Validation Accuracy: 0.535000
Epoch 100, CIFAR-10 Batch 2:  Loss:     0.9242, Validation Accuracy: 0.559000
Epoch 100, CIFAR-10 Batch 3:  Loss:     0.8451, Validation Accuracy: 0.555000
Epoch 100, CIFAR-10 Batch 4:  Loss:     0.9588, Validation Accuracy: 0.544600
Epoch 100, CIFAR-10 Batch 5:  Loss:     0.9546, Validation Accuracy: 0.554400

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [18]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.5466796875

Why 50-70% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 70%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.