Artificial data is generated and saved as /tmp/tmppm6t2c17.csv
---- Algorithm parameters ----
Number of MC samples: 10000
Number of candidate models: 450
---- Data ----
Data loaded from /tmp/tmppm6t2c17.csv.
Data contains 100 samples.
Variable names: ['x1_dst' 'x2_src']
---- Inference for variables "x1_dst" and "x2_src" ----
Inferred : x1_dst -> x2_src (posterior prob: 0.189, loglikelihood: -256.786)
(best_rev): x2_src -> x1_dst (posterior prob: 0.043, loglikelihood: -258.258)
Hyper parameters of the optimal model:
Causality : var1 -> var2
Standardize : True
subtract_mu_reg: False
fix_mu_zero : True
prior_var_mu : auto
prior_indvdl : t
v_indvdl_1 : 0.200000
v_indvdl_2 : 0.200000
df_indvdl : 8.000000
L_cov12/21 : -0.900000
dist_noise : laplace
Hyper parameters of the reverse optimal model:
Causality : var2 -> var1
Standardize : True
subtract_mu_reg: False
fix_mu_zero : True
prior_var_mu : auto
prior_indvdl : t
v_indvdl_1 : 0.200000
v_indvdl_2 : 0.200000
df_indvdl : 8.000000
L_cov12/21 : 0.700000
dist_noise : laplace