Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 3
sample_id = 60
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 3:
Samples: 10000
Label Counts: {0: 994, 1: 1042, 2: 965, 3: 997, 4: 990, 5: 1029, 6: 978, 7: 1015, 8: 961, 9: 1029}
First 20 Labels: [8, 5, 0, 6, 9, 2, 8, 3, 6, 2, 7, 4, 6, 9, 0, 0, 7, 3, 7, 2]

Example of Image 60:
Image - Min Value: 8 Max Value: 255
Image - Shape: (32, 32, 3)
Label - Label Id: 4 Name: deer

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    return x / 255.


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [4]:
def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    one_hot = np.zeros([len(x), 10])
    for i, label in enumerate(x):
        one_hot[i, label] = 1.
    return one_hot


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [5]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [6]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [7]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=[None] + list(image_shape), name="x")


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=[None, n_classes], name="y")


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, name="keep_prob")


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [8]:
import math

def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    
    # Weight and bias
    # stddev for tf.truncated_normal is 1 / (2 * sqrt(y)) because tf.truncated_normal
    # except that values whose magnitude is more than 2 standard deviations.
    stddev = 1. / (2. * math.sqrt(shape[1] * shape[2] * shape[3]))
    weight = tf.Variable(tf.truncated_normal(
        [conv_ksize[0], conv_ksize[1], shape[3], conv_num_outputs],
        stddev=stddev
    ))
    bias = tf.Variable(tf.truncated_normal(
        [conv_num_outputs],
        stddev=stddev
    ))
    
    # Apply Convolution
    conv_layer = tf.nn.conv2d(
        x_tensor,
        weight,
        strides=[1, conv_strides[0], conv_strides[1], 1],
        padding='SAME'
    )
    
    # Add bias
    conv_layer = tf.nn.bias_add(conv_layer, bias)

    # Apply activation function
    conv_layer = tf.nn.relu(conv_layer)
    
    # Apply Max Pooling
    conv_layer = tf.nn.max_pool(
        conv_layer,
        ksize=[1, pool_ksize[0], pool_ksize[1], 1],
        strides=[1, pool_strides[0], pool_strides[1], 1],
        padding='SAME')
    
    return conv_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [9]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    return tf.reshape(x_tensor, [-1, shape[1] * shape[2] * shape[3]])


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [10]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    # stddev for tf.truncated_normal is 1 / (2 * sqrt(y)) because tf.truncated_normal
    # except that values whose magnitude is more than 2 standard deviations.
    stddev = 1. / (2. * math.sqrt(shape[1]))
    weight = tf.Variable(tf.truncated_normal([shape[1], num_outputs], stddev=stddev))
    bias = tf.Variable(tf.truncated_normal([num_outputs], stddev=stddev))
    return tf.nn.relu(tf.add(tf.matmul(x_tensor, weight), bias))


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [11]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    # stddev for tf.truncated_normal is 1 / (2 * sqrt(y)) because tf.truncated_normal
    # except that values whose magnitude is more than 2 standard deviations.
    stddev = 1. / (2. * math.sqrt(shape[1]))
    weight = tf.Variable(tf.truncated_normal([shape[1], num_outputs], stddev=stddev))
    bias = tf.Variable(tf.truncated_normal([num_outputs], stddev=stddev))
    return tf.add(tf.matmul(x_tensor, weight), bias)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [12]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    x_tensor = conv2d_maxpool(x, 64, (5,5), (1,1), (2,2), (2,2))
    x_tensor = conv2d_maxpool(x_tensor, 128, (5,5), (1,1), (2,2), (2,2))

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    x_tensor = flatten(x_tensor)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    x_tensor = fully_conn(x_tensor, 1024)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob)
    
    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    x_tensor = output(x_tensor, 10)
    
    # TODO: return output
    return x_tensor


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [13]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    session.run(optimizer, feed_dict={keep_prob: keep_probability, x: feature_batch, y: label_batch})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [14]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(
        session.run(cost, feed_dict={keep_prob:1.0, x:feature_batch, y:label_batch}),
        session.run(accuracy, feed_dict={keep_prob:1.0, x:valid_features, y:valid_labels})
    ))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [15]:
# TODO: Tune Parameters
# batch_size
batch_size = 128

In [16]:
# Grid Search on a single batch.
plot_keep_probability = np.arange(0.1, 1.05, 0.05)

# After searching true keep probability, true epochs be going to be searched.
temp_epochs = 30

plot_average_accuracy = np.zeros(len(plot_keep_probability))

print('Grid Search for keep_probability on a Single Batch...')
with tf.Session() as sess:
    for i, keep_probability in enumerate(plot_keep_probability):
        sess.run(tf.global_variables_initializer())
        average_accuracy = 0
        for epoch in range(temp_epochs):
            batch_i = 1
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            if epoch +1 > 20:
                average_accuracy += sess.run(accuracy, feed_dict={keep_prob:1.0, x:valid_features, y:valid_labels})
            if epoch + 1 == temp_epochs:
                plot_average_accuracy[i] = average_accuracy / 10.
                print('Keep Probability {:.2f}, Epoch {:>2}, CIFAR-10 Batch {}:  '.format(keep_probability, epoch + 1, batch_i), end='')
                print('Average Accuracy: {:.6f}'.format(plot_average_accuracy[i]))


Grid Search for keep_probability on a Single Batch...
Keep Probability 0.10, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.584020
Keep Probability 0.15, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.584560
Keep Probability 0.20, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.580400
Keep Probability 0.25, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.592600
Keep Probability 0.30, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.577480
Keep Probability 0.35, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.564040
Keep Probability 0.40, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.589620
Keep Probability 0.45, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.575540
Keep Probability 0.50, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.574340
Keep Probability 0.55, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.578040
Keep Probability 0.60, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.565920
Keep Probability 0.65, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.568360
Keep Probability 0.70, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.566180
Keep Probability 0.75, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.549540
Keep Probability 0.80, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.543200
Keep Probability 0.85, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.564120
Keep Probability 0.90, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.551660
Keep Probability 0.95, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.541280
Keep Probability 1.00, Epoch 30, CIFAR-10 Batch 1:  Average Accuracy: 0.534560

In [17]:
%matplotlib inline

import matplotlib.pyplot as plt

# Average accuracy for keep probability.
plt.plot(plot_keep_probability, plot_average_accuracy)
plt.title("Average accuracy for keep probability on a single batch.")
plt.xlabel("Keep probability")
plt.ylabel("Average accuracy")


Out[17]:
<matplotlib.text.Text at 0x7f451a32cef0>

In [18]:
# TODO: Tune Parameters
# keep_probability
keep_probability = 0.25

In [19]:
# Check epochs on a single batch.
epochs = 100 # max epochs

print('Check epochs on a Single Batch...')

plot_epochs = np.arange(0, epochs, 1)
plot_cost = np.zeros(epochs)
plot_accuracy = np.zeros(epochs)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        
        plot_cost[epoch] = sess.run(cost, feed_dict={keep_prob:1.0, x:batch_features, y:batch_labels})
        plot_accuracy[epoch] = sess.run(accuracy, feed_dict={keep_prob:1.0, x:valid_features, y:valid_labels})

        if (epoch + 1) % 10 == 0:
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')        
            print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(plot_cost[epoch], plot_accuracy[epoch]))


Check epochs on a Single Batch...
Epoch 10, CIFAR-10 Batch 1:  Loss:     1.0005 Validation Accuracy: 0.530000
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.2283 Validation Accuracy: 0.596400
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.0565 Validation Accuracy: 0.594600
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.0086 Validation Accuracy: 0.589400
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.0018 Validation Accuracy: 0.600200
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.0009 Validation Accuracy: 0.599000
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.609200
Epoch 80, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.607800
Epoch 90, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.603000
Epoch 100, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.608000

In [20]:
# Cost for epochs
plt.plot(plot_epochs, plot_cost)
plt.title("Loss for epochs on a single batch.")
plt.xlabel("Epochs")
plt.ylabel("Loss")


Out[20]:
<matplotlib.text.Text at 0x7f451801f358>

In [21]:
# Accuracy for epochs
plt.plot(plot_epochs, plot_accuracy)
plt.title("Accuracy for epochs on a single batch.")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")


Out[21]:
<matplotlib.text.Text at 0x7f4510d7b198>

In [23]:
# TODO: Tune Parameters
# epochs
epochs = 70

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [24]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.1764 Validation Accuracy: 0.254200
Epoch  2, CIFAR-10 Batch 1:  Loss:     1.9550 Validation Accuracy: 0.334800
Epoch  3, CIFAR-10 Batch 1:  Loss:     1.9022 Validation Accuracy: 0.387600
Epoch  4, CIFAR-10 Batch 1:  Loss:     1.8392 Validation Accuracy: 0.407400
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.6947 Validation Accuracy: 0.450200
Epoch  6, CIFAR-10 Batch 1:  Loss:     1.5282 Validation Accuracy: 0.475400
Epoch  7, CIFAR-10 Batch 1:  Loss:     1.5102 Validation Accuracy: 0.488800
Epoch  8, CIFAR-10 Batch 1:  Loss:     1.3590 Validation Accuracy: 0.505000
Epoch  9, CIFAR-10 Batch 1:  Loss:     1.2547 Validation Accuracy: 0.502000
Epoch 10, CIFAR-10 Batch 1:  Loss:     1.1998 Validation Accuracy: 0.522200
Epoch 11, CIFAR-10 Batch 1:  Loss:     1.0851 Validation Accuracy: 0.540600
Epoch 12, CIFAR-10 Batch 1:  Loss:     0.9697 Validation Accuracy: 0.550600
Epoch 13, CIFAR-10 Batch 1:  Loss:     0.9025 Validation Accuracy: 0.549400
Epoch 14, CIFAR-10 Batch 1:  Loss:     0.8626 Validation Accuracy: 0.550000
Epoch 15, CIFAR-10 Batch 1:  Loss:     0.7644 Validation Accuracy: 0.566000
Epoch 16, CIFAR-10 Batch 1:  Loss:     0.6907 Validation Accuracy: 0.566800
Epoch 17, CIFAR-10 Batch 1:  Loss:     0.5552 Validation Accuracy: 0.578600
Epoch 18, CIFAR-10 Batch 1:  Loss:     0.5008 Validation Accuracy: 0.583200
Epoch 19, CIFAR-10 Batch 1:  Loss:     0.4416 Validation Accuracy: 0.576800
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.4107 Validation Accuracy: 0.589000
Epoch 21, CIFAR-10 Batch 1:  Loss:     0.3412 Validation Accuracy: 0.595200
Epoch 22, CIFAR-10 Batch 1:  Loss:     0.3069 Validation Accuracy: 0.589400
Epoch 23, CIFAR-10 Batch 1:  Loss:     0.2852 Validation Accuracy: 0.597000
Epoch 24, CIFAR-10 Batch 1:  Loss:     0.2647 Validation Accuracy: 0.593400
Epoch 25, CIFAR-10 Batch 1:  Loss:     0.2544 Validation Accuracy: 0.596200
Epoch 26, CIFAR-10 Batch 1:  Loss:     0.2129 Validation Accuracy: 0.591200
Epoch 27, CIFAR-10 Batch 1:  Loss:     0.1814 Validation Accuracy: 0.586800
Epoch 28, CIFAR-10 Batch 1:  Loss:     0.1600 Validation Accuracy: 0.594800
Epoch 29, CIFAR-10 Batch 1:  Loss:     0.1185 Validation Accuracy: 0.596200
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.1023 Validation Accuracy: 0.594400
Epoch 31, CIFAR-10 Batch 1:  Loss:     0.1011 Validation Accuracy: 0.596600
Epoch 32, CIFAR-10 Batch 1:  Loss:     0.0810 Validation Accuracy: 0.585800
Epoch 33, CIFAR-10 Batch 1:  Loss:     0.0660 Validation Accuracy: 0.590200
Epoch 34, CIFAR-10 Batch 1:  Loss:     0.0659 Validation Accuracy: 0.593000
Epoch 35, CIFAR-10 Batch 1:  Loss:     0.0622 Validation Accuracy: 0.590200
Epoch 36, CIFAR-10 Batch 1:  Loss:     0.0462 Validation Accuracy: 0.590400
Epoch 37, CIFAR-10 Batch 1:  Loss:     0.0364 Validation Accuracy: 0.580000
Epoch 38, CIFAR-10 Batch 1:  Loss:     0.0422 Validation Accuracy: 0.586200
Epoch 39, CIFAR-10 Batch 1:  Loss:     0.0448 Validation Accuracy: 0.584200
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.0395 Validation Accuracy: 0.588400
Epoch 41, CIFAR-10 Batch 1:  Loss:     0.0225 Validation Accuracy: 0.596800
Epoch 42, CIFAR-10 Batch 1:  Loss:     0.0147 Validation Accuracy: 0.594000
Epoch 43, CIFAR-10 Batch 1:  Loss:     0.0149 Validation Accuracy: 0.588200
Epoch 44, CIFAR-10 Batch 1:  Loss:     0.0140 Validation Accuracy: 0.604800
Epoch 45, CIFAR-10 Batch 1:  Loss:     0.0135 Validation Accuracy: 0.597600
Epoch 46, CIFAR-10 Batch 1:  Loss:     0.0111 Validation Accuracy: 0.601200
Epoch 47, CIFAR-10 Batch 1:  Loss:     0.0132 Validation Accuracy: 0.603200
Epoch 48, CIFAR-10 Batch 1:  Loss:     0.0105 Validation Accuracy: 0.600400
Epoch 49, CIFAR-10 Batch 1:  Loss:     0.0095 Validation Accuracy: 0.604200
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.0108 Validation Accuracy: 0.600000
Epoch 51, CIFAR-10 Batch 1:  Loss:     0.0124 Validation Accuracy: 0.594600
Epoch 52, CIFAR-10 Batch 1:  Loss:     0.0055 Validation Accuracy: 0.604000
Epoch 53, CIFAR-10 Batch 1:  Loss:     0.0072 Validation Accuracy: 0.596400
Epoch 54, CIFAR-10 Batch 1:  Loss:     0.0049 Validation Accuracy: 0.605000
Epoch 55, CIFAR-10 Batch 1:  Loss:     0.0041 Validation Accuracy: 0.603000
Epoch 56, CIFAR-10 Batch 1:  Loss:     0.0029 Validation Accuracy: 0.606000
Epoch 57, CIFAR-10 Batch 1:  Loss:     0.0026 Validation Accuracy: 0.609600
Epoch 58, CIFAR-10 Batch 1:  Loss:     0.0020 Validation Accuracy: 0.605600
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.0032 Validation Accuracy: 0.598400
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.0048 Validation Accuracy: 0.595200
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.0044 Validation Accuracy: 0.599200
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.0031 Validation Accuracy: 0.603000
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.0027 Validation Accuracy: 0.602600
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.0044 Validation Accuracy: 0.595600
Epoch 65, CIFAR-10 Batch 1:  Loss:     0.0064 Validation Accuracy: 0.592800
Epoch 66, CIFAR-10 Batch 1:  Loss:     0.0026 Validation Accuracy: 0.602400
Epoch 67, CIFAR-10 Batch 1:  Loss:     0.0009 Validation Accuracy: 0.611600
Epoch 68, CIFAR-10 Batch 1:  Loss:     0.0018 Validation Accuracy: 0.599800
Epoch 69, CIFAR-10 Batch 1:  Loss:     0.0009 Validation Accuracy: 0.601800
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.0008 Validation Accuracy: 0.604200

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [25]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.1740 Validation Accuracy: 0.249400
Epoch  1, CIFAR-10 Batch 2:  Loss:     1.7919 Validation Accuracy: 0.369600
Epoch  1, CIFAR-10 Batch 3:  Loss:     1.4868 Validation Accuracy: 0.417200
Epoch  1, CIFAR-10 Batch 4:  Loss:     1.5117 Validation Accuracy: 0.433600
Epoch  1, CIFAR-10 Batch 5:  Loss:     1.6236 Validation Accuracy: 0.472000
Epoch  2, CIFAR-10 Batch 1:  Loss:     1.7366 Validation Accuracy: 0.483000
Epoch  2, CIFAR-10 Batch 2:  Loss:     1.3771 Validation Accuracy: 0.502400
Epoch  2, CIFAR-10 Batch 3:  Loss:     1.1020 Validation Accuracy: 0.508200
Epoch  2, CIFAR-10 Batch 4:  Loss:     1.3555 Validation Accuracy: 0.513000
Epoch  2, CIFAR-10 Batch 5:  Loss:     1.3758 Validation Accuracy: 0.534200
Epoch  3, CIFAR-10 Batch 1:  Loss:     1.4147 Validation Accuracy: 0.540200
Epoch  3, CIFAR-10 Batch 2:  Loss:     1.1484 Validation Accuracy: 0.551600
Epoch  3, CIFAR-10 Batch 3:  Loss:     0.9809 Validation Accuracy: 0.558600
Epoch  3, CIFAR-10 Batch 4:  Loss:     1.1359 Validation Accuracy: 0.553000
Epoch  3, CIFAR-10 Batch 5:  Loss:     1.1649 Validation Accuracy: 0.592400
Epoch  4, CIFAR-10 Batch 1:  Loss:     1.3061 Validation Accuracy: 0.585600
Epoch  4, CIFAR-10 Batch 2:  Loss:     0.9741 Validation Accuracy: 0.606200
Epoch  4, CIFAR-10 Batch 3:  Loss:     0.8315 Validation Accuracy: 0.609000
Epoch  4, CIFAR-10 Batch 4:  Loss:     0.9974 Validation Accuracy: 0.605400
Epoch  4, CIFAR-10 Batch 5:  Loss:     0.9502 Validation Accuracy: 0.631800
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.1598 Validation Accuracy: 0.630000
Epoch  5, CIFAR-10 Batch 2:  Loss:     0.9006 Validation Accuracy: 0.630400
Epoch  5, CIFAR-10 Batch 3:  Loss:     0.6980 Validation Accuracy: 0.647800
Epoch  5, CIFAR-10 Batch 4:  Loss:     0.7908 Validation Accuracy: 0.643000
Epoch  5, CIFAR-10 Batch 5:  Loss:     0.8374 Validation Accuracy: 0.657800
Epoch  6, CIFAR-10 Batch 1:  Loss:     0.9676 Validation Accuracy: 0.657400
Epoch  6, CIFAR-10 Batch 2:  Loss:     0.7742 Validation Accuracy: 0.660000
Epoch  6, CIFAR-10 Batch 3:  Loss:     0.5260 Validation Accuracy: 0.665800
Epoch  6, CIFAR-10 Batch 4:  Loss:     0.7140 Validation Accuracy: 0.667200
Epoch  6, CIFAR-10 Batch 5:  Loss:     0.7283 Validation Accuracy: 0.669000
Epoch  7, CIFAR-10 Batch 1:  Loss:     0.8125 Validation Accuracy: 0.677200
Epoch  7, CIFAR-10 Batch 2:  Loss:     0.7077 Validation Accuracy: 0.663200
Epoch  7, CIFAR-10 Batch 3:  Loss:     0.4482 Validation Accuracy: 0.684200
Epoch  7, CIFAR-10 Batch 4:  Loss:     0.5837 Validation Accuracy: 0.682600
Epoch  7, CIFAR-10 Batch 5:  Loss:     0.6130 Validation Accuracy: 0.681600
Epoch  8, CIFAR-10 Batch 1:  Loss:     0.7109 Validation Accuracy: 0.687400
Epoch  8, CIFAR-10 Batch 2:  Loss:     0.5702 Validation Accuracy: 0.683200
Epoch  8, CIFAR-10 Batch 3:  Loss:     0.4424 Validation Accuracy: 0.684400
Epoch  8, CIFAR-10 Batch 4:  Loss:     0.5156 Validation Accuracy: 0.696600
Epoch  8, CIFAR-10 Batch 5:  Loss:     0.4844 Validation Accuracy: 0.685200
Epoch  9, CIFAR-10 Batch 1:  Loss:     0.5966 Validation Accuracy: 0.690400
Epoch  9, CIFAR-10 Batch 2:  Loss:     0.5180 Validation Accuracy: 0.684600
Epoch  9, CIFAR-10 Batch 3:  Loss:     0.3519 Validation Accuracy: 0.698800
Epoch  9, CIFAR-10 Batch 4:  Loss:     0.4463 Validation Accuracy: 0.692200
Epoch  9, CIFAR-10 Batch 5:  Loss:     0.4649 Validation Accuracy: 0.676600
Epoch 10, CIFAR-10 Batch 1:  Loss:     0.5139 Validation Accuracy: 0.695800
Epoch 10, CIFAR-10 Batch 2:  Loss:     0.4716 Validation Accuracy: 0.693800
Epoch 10, CIFAR-10 Batch 3:  Loss:     0.3514 Validation Accuracy: 0.692000
Epoch 10, CIFAR-10 Batch 4:  Loss:     0.3848 Validation Accuracy: 0.696400
Epoch 10, CIFAR-10 Batch 5:  Loss:     0.3935 Validation Accuracy: 0.689000
Epoch 11, CIFAR-10 Batch 1:  Loss:     0.4934 Validation Accuracy: 0.695400
Epoch 11, CIFAR-10 Batch 2:  Loss:     0.3948 Validation Accuracy: 0.701200
Epoch 11, CIFAR-10 Batch 3:  Loss:     0.3025 Validation Accuracy: 0.690400
Epoch 11, CIFAR-10 Batch 4:  Loss:     0.3635 Validation Accuracy: 0.710800
Epoch 11, CIFAR-10 Batch 5:  Loss:     0.3452 Validation Accuracy: 0.693000
Epoch 12, CIFAR-10 Batch 1:  Loss:     0.4001 Validation Accuracy: 0.705800
Epoch 12, CIFAR-10 Batch 2:  Loss:     0.3507 Validation Accuracy: 0.706800
Epoch 12, CIFAR-10 Batch 3:  Loss:     0.2479 Validation Accuracy: 0.707200
Epoch 12, CIFAR-10 Batch 4:  Loss:     0.3241 Validation Accuracy: 0.711600
Epoch 12, CIFAR-10 Batch 5:  Loss:     0.3183 Validation Accuracy: 0.702800
Epoch 13, CIFAR-10 Batch 1:  Loss:     0.3747 Validation Accuracy: 0.707600
Epoch 13, CIFAR-10 Batch 2:  Loss:     0.3353 Validation Accuracy: 0.699800
Epoch 13, CIFAR-10 Batch 3:  Loss:     0.2411 Validation Accuracy: 0.708200
Epoch 13, CIFAR-10 Batch 4:  Loss:     0.2983 Validation Accuracy: 0.698200
Epoch 13, CIFAR-10 Batch 5:  Loss:     0.2757 Validation Accuracy: 0.713200
Epoch 14, CIFAR-10 Batch 1:  Loss:     0.2887 Validation Accuracy: 0.707400
Epoch 14, CIFAR-10 Batch 2:  Loss:     0.2635 Validation Accuracy: 0.717800
Epoch 14, CIFAR-10 Batch 3:  Loss:     0.1888 Validation Accuracy: 0.719800
Epoch 14, CIFAR-10 Batch 4:  Loss:     0.2541 Validation Accuracy: 0.719800
Epoch 14, CIFAR-10 Batch 5:  Loss:     0.2134 Validation Accuracy: 0.717200
Epoch 15, CIFAR-10 Batch 1:  Loss:     0.2397 Validation Accuracy: 0.712800
Epoch 15, CIFAR-10 Batch 2:  Loss:     0.2466 Validation Accuracy: 0.714200
Epoch 15, CIFAR-10 Batch 3:  Loss:     0.1705 Validation Accuracy: 0.723600
Epoch 15, CIFAR-10 Batch 4:  Loss:     0.2186 Validation Accuracy: 0.712600
Epoch 15, CIFAR-10 Batch 5:  Loss:     0.2071 Validation Accuracy: 0.719600
Epoch 16, CIFAR-10 Batch 1:  Loss:     0.2413 Validation Accuracy: 0.713600
Epoch 16, CIFAR-10 Batch 2:  Loss:     0.2245 Validation Accuracy: 0.715000
Epoch 16, CIFAR-10 Batch 3:  Loss:     0.1547 Validation Accuracy: 0.714800
Epoch 16, CIFAR-10 Batch 4:  Loss:     0.2059 Validation Accuracy: 0.715200
Epoch 16, CIFAR-10 Batch 5:  Loss:     0.1901 Validation Accuracy: 0.718600
Epoch 17, CIFAR-10 Batch 1:  Loss:     0.1964 Validation Accuracy: 0.710600
Epoch 17, CIFAR-10 Batch 2:  Loss:     0.1884 Validation Accuracy: 0.720400
Epoch 17, CIFAR-10 Batch 3:  Loss:     0.1378 Validation Accuracy: 0.712200
Epoch 17, CIFAR-10 Batch 4:  Loss:     0.1618 Validation Accuracy: 0.716200
Epoch 17, CIFAR-10 Batch 5:  Loss:     0.1643 Validation Accuracy: 0.726600
Epoch 18, CIFAR-10 Batch 1:  Loss:     0.1510 Validation Accuracy: 0.718200
Epoch 18, CIFAR-10 Batch 2:  Loss:     0.1550 Validation Accuracy: 0.717400
Epoch 18, CIFAR-10 Batch 3:  Loss:     0.1148 Validation Accuracy: 0.714200
Epoch 18, CIFAR-10 Batch 4:  Loss:     0.1646 Validation Accuracy: 0.711200
Epoch 18, CIFAR-10 Batch 5:  Loss:     0.1623 Validation Accuracy: 0.710200
Epoch 19, CIFAR-10 Batch 1:  Loss:     0.1827 Validation Accuracy: 0.726000
Epoch 19, CIFAR-10 Batch 2:  Loss:     0.1331 Validation Accuracy: 0.717200
Epoch 19, CIFAR-10 Batch 3:  Loss:     0.1069 Validation Accuracy: 0.711400
Epoch 19, CIFAR-10 Batch 4:  Loss:     0.1556 Validation Accuracy: 0.720800
Epoch 19, CIFAR-10 Batch 5:  Loss:     0.1502 Validation Accuracy: 0.722200
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.1387 Validation Accuracy: 0.718800
Epoch 20, CIFAR-10 Batch 2:  Loss:     0.0949 Validation Accuracy: 0.722000
Epoch 20, CIFAR-10 Batch 3:  Loss:     0.0961 Validation Accuracy: 0.722000
Epoch 20, CIFAR-10 Batch 4:  Loss:     0.1128 Validation Accuracy: 0.722000
Epoch 20, CIFAR-10 Batch 5:  Loss:     0.1242 Validation Accuracy: 0.727400
Epoch 21, CIFAR-10 Batch 1:  Loss:     0.1476 Validation Accuracy: 0.718400
Epoch 21, CIFAR-10 Batch 2:  Loss:     0.0824 Validation Accuracy: 0.724000
Epoch 21, CIFAR-10 Batch 3:  Loss:     0.0745 Validation Accuracy: 0.721800
Epoch 21, CIFAR-10 Batch 4:  Loss:     0.1106 Validation Accuracy: 0.724400
Epoch 21, CIFAR-10 Batch 5:  Loss:     0.1167 Validation Accuracy: 0.716200
Epoch 22, CIFAR-10 Batch 1:  Loss:     0.1500 Validation Accuracy: 0.713600
Epoch 22, CIFAR-10 Batch 2:  Loss:     0.1004 Validation Accuracy: 0.716400
Epoch 22, CIFAR-10 Batch 3:  Loss:     0.0709 Validation Accuracy: 0.714400
Epoch 22, CIFAR-10 Batch 4:  Loss:     0.1212 Validation Accuracy: 0.722600
Epoch 22, CIFAR-10 Batch 5:  Loss:     0.0748 Validation Accuracy: 0.717400
Epoch 23, CIFAR-10 Batch 1:  Loss:     0.1011 Validation Accuracy: 0.720600
Epoch 23, CIFAR-10 Batch 2:  Loss:     0.0660 Validation Accuracy: 0.713600
Epoch 23, CIFAR-10 Batch 3:  Loss:     0.0635 Validation Accuracy: 0.721000
Epoch 23, CIFAR-10 Batch 4:  Loss:     0.0815 Validation Accuracy: 0.719800
Epoch 23, CIFAR-10 Batch 5:  Loss:     0.0796 Validation Accuracy: 0.721000
Epoch 24, CIFAR-10 Batch 1:  Loss:     0.0959 Validation Accuracy: 0.713400
Epoch 24, CIFAR-10 Batch 2:  Loss:     0.0552 Validation Accuracy: 0.717600
Epoch 24, CIFAR-10 Batch 3:  Loss:     0.0576 Validation Accuracy: 0.705000
Epoch 24, CIFAR-10 Batch 4:  Loss:     0.0719 Validation Accuracy: 0.723600
Epoch 24, CIFAR-10 Batch 5:  Loss:     0.0648 Validation Accuracy: 0.724400
Epoch 25, CIFAR-10 Batch 1:  Loss:     0.0742 Validation Accuracy: 0.716800
Epoch 25, CIFAR-10 Batch 2:  Loss:     0.0655 Validation Accuracy: 0.720200
Epoch 25, CIFAR-10 Batch 3:  Loss:     0.0597 Validation Accuracy: 0.717200
Epoch 25, CIFAR-10 Batch 4:  Loss:     0.0711 Validation Accuracy: 0.717400
Epoch 25, CIFAR-10 Batch 5:  Loss:     0.0695 Validation Accuracy: 0.718200
Epoch 26, CIFAR-10 Batch 1:  Loss:     0.0667 Validation Accuracy: 0.719600
Epoch 26, CIFAR-10 Batch 2:  Loss:     0.0437 Validation Accuracy: 0.717000
Epoch 26, CIFAR-10 Batch 3:  Loss:     0.0395 Validation Accuracy: 0.722000
Epoch 26, CIFAR-10 Batch 4:  Loss:     0.0601 Validation Accuracy: 0.719400
Epoch 26, CIFAR-10 Batch 5:  Loss:     0.0469 Validation Accuracy: 0.723600
Epoch 27, CIFAR-10 Batch 1:  Loss:     0.0636 Validation Accuracy: 0.720600
Epoch 27, CIFAR-10 Batch 2:  Loss:     0.0535 Validation Accuracy: 0.719600
Epoch 27, CIFAR-10 Batch 3:  Loss:     0.0365 Validation Accuracy: 0.711400
Epoch 27, CIFAR-10 Batch 4:  Loss:     0.0643 Validation Accuracy: 0.719000
Epoch 27, CIFAR-10 Batch 5:  Loss:     0.0391 Validation Accuracy: 0.721200
Epoch 28, CIFAR-10 Batch 1:  Loss:     0.0607 Validation Accuracy: 0.712400
Epoch 28, CIFAR-10 Batch 2:  Loss:     0.0382 Validation Accuracy: 0.716800
Epoch 28, CIFAR-10 Batch 3:  Loss:     0.0423 Validation Accuracy: 0.702600
Epoch 28, CIFAR-10 Batch 4:  Loss:     0.0576 Validation Accuracy: 0.720400
Epoch 28, CIFAR-10 Batch 5:  Loss:     0.0432 Validation Accuracy: 0.726400
Epoch 29, CIFAR-10 Batch 1:  Loss:     0.0442 Validation Accuracy: 0.720000
Epoch 29, CIFAR-10 Batch 2:  Loss:     0.0267 Validation Accuracy: 0.723200
Epoch 29, CIFAR-10 Batch 3:  Loss:     0.0355 Validation Accuracy: 0.701600
Epoch 29, CIFAR-10 Batch 4:  Loss:     0.0582 Validation Accuracy: 0.714400
Epoch 29, CIFAR-10 Batch 5:  Loss:     0.0301 Validation Accuracy: 0.721600
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.0427 Validation Accuracy: 0.727800
Epoch 30, CIFAR-10 Batch 2:  Loss:     0.0404 Validation Accuracy: 0.720800
Epoch 30, CIFAR-10 Batch 3:  Loss:     0.0251 Validation Accuracy: 0.724600
Epoch 30, CIFAR-10 Batch 4:  Loss:     0.0656 Validation Accuracy: 0.716200
Epoch 30, CIFAR-10 Batch 5:  Loss:     0.0181 Validation Accuracy: 0.722800
Epoch 31, CIFAR-10 Batch 1:  Loss:     0.0437 Validation Accuracy: 0.722200
Epoch 31, CIFAR-10 Batch 2:  Loss:     0.0345 Validation Accuracy: 0.724200
Epoch 31, CIFAR-10 Batch 3:  Loss:     0.0194 Validation Accuracy: 0.727400
Epoch 31, CIFAR-10 Batch 4:  Loss:     0.0387 Validation Accuracy: 0.716400
Epoch 31, CIFAR-10 Batch 5:  Loss:     0.0288 Validation Accuracy: 0.722600
Epoch 32, CIFAR-10 Batch 1:  Loss:     0.0418 Validation Accuracy: 0.724800
Epoch 32, CIFAR-10 Batch 2:  Loss:     0.0257 Validation Accuracy: 0.721200
Epoch 32, CIFAR-10 Batch 3:  Loss:     0.0164 Validation Accuracy: 0.728400
Epoch 32, CIFAR-10 Batch 4:  Loss:     0.0353 Validation Accuracy: 0.722800
Epoch 32, CIFAR-10 Batch 5:  Loss:     0.0242 Validation Accuracy: 0.723800
Epoch 33, CIFAR-10 Batch 1:  Loss:     0.0355 Validation Accuracy: 0.722800
Epoch 33, CIFAR-10 Batch 2:  Loss:     0.0255 Validation Accuracy: 0.718200
Epoch 33, CIFAR-10 Batch 3:  Loss:     0.0215 Validation Accuracy: 0.722600
Epoch 33, CIFAR-10 Batch 4:  Loss:     0.0352 Validation Accuracy: 0.716600
Epoch 33, CIFAR-10 Batch 5:  Loss:     0.0154 Validation Accuracy: 0.720800
Epoch 34, CIFAR-10 Batch 1:  Loss:     0.0299 Validation Accuracy: 0.722600
Epoch 34, CIFAR-10 Batch 2:  Loss:     0.0312 Validation Accuracy: 0.721200
Epoch 34, CIFAR-10 Batch 3:  Loss:     0.0204 Validation Accuracy: 0.727000
Epoch 34, CIFAR-10 Batch 4:  Loss:     0.0233 Validation Accuracy: 0.719000
Epoch 34, CIFAR-10 Batch 5:  Loss:     0.0286 Validation Accuracy: 0.725800
Epoch 35, CIFAR-10 Batch 1:  Loss:     0.0320 Validation Accuracy: 0.719800
Epoch 35, CIFAR-10 Batch 2:  Loss:     0.0289 Validation Accuracy: 0.716400
Epoch 35, CIFAR-10 Batch 3:  Loss:     0.0125 Validation Accuracy: 0.731000
Epoch 35, CIFAR-10 Batch 4:  Loss:     0.0256 Validation Accuracy: 0.732600
Epoch 35, CIFAR-10 Batch 5:  Loss:     0.0191 Validation Accuracy: 0.731600
Epoch 36, CIFAR-10 Batch 1:  Loss:     0.0469 Validation Accuracy: 0.721600
Epoch 36, CIFAR-10 Batch 2:  Loss:     0.0197 Validation Accuracy: 0.717400
Epoch 36, CIFAR-10 Batch 3:  Loss:     0.0099 Validation Accuracy: 0.727800
Epoch 36, CIFAR-10 Batch 4:  Loss:     0.0294 Validation Accuracy: 0.722600
Epoch 36, CIFAR-10 Batch 5:  Loss:     0.0107 Validation Accuracy: 0.729200
Epoch 37, CIFAR-10 Batch 1:  Loss:     0.0366 Validation Accuracy: 0.722000
Epoch 37, CIFAR-10 Batch 2:  Loss:     0.0222 Validation Accuracy: 0.719200
Epoch 37, CIFAR-10 Batch 3:  Loss:     0.0111 Validation Accuracy: 0.726400
Epoch 37, CIFAR-10 Batch 4:  Loss:     0.0173 Validation Accuracy: 0.729400
Epoch 37, CIFAR-10 Batch 5:  Loss:     0.0146 Validation Accuracy: 0.721800
Epoch 38, CIFAR-10 Batch 1:  Loss:     0.0191 Validation Accuracy: 0.722200
Epoch 38, CIFAR-10 Batch 2:  Loss:     0.0167 Validation Accuracy: 0.720200
Epoch 38, CIFAR-10 Batch 3:  Loss:     0.0080 Validation Accuracy: 0.729400
Epoch 38, CIFAR-10 Batch 4:  Loss:     0.0109 Validation Accuracy: 0.715600
Epoch 38, CIFAR-10 Batch 5:  Loss:     0.0139 Validation Accuracy: 0.717200
Epoch 39, CIFAR-10 Batch 1:  Loss:     0.0252 Validation Accuracy: 0.722200
Epoch 39, CIFAR-10 Batch 2:  Loss:     0.0247 Validation Accuracy: 0.719200
Epoch 39, CIFAR-10 Batch 3:  Loss:     0.0097 Validation Accuracy: 0.731000
Epoch 39, CIFAR-10 Batch 4:  Loss:     0.0432 Validation Accuracy: 0.714400
Epoch 39, CIFAR-10 Batch 5:  Loss:     0.0062 Validation Accuracy: 0.731800
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.0217 Validation Accuracy: 0.720000
Epoch 40, CIFAR-10 Batch 2:  Loss:     0.0169 Validation Accuracy: 0.716400
Epoch 40, CIFAR-10 Batch 3:  Loss:     0.0063 Validation Accuracy: 0.725000
Epoch 40, CIFAR-10 Batch 4:  Loss:     0.0254 Validation Accuracy: 0.717800
Epoch 40, CIFAR-10 Batch 5:  Loss:     0.0075 Validation Accuracy: 0.722800
Epoch 41, CIFAR-10 Batch 1:  Loss:     0.0096 Validation Accuracy: 0.721800
Epoch 41, CIFAR-10 Batch 2:  Loss:     0.0104 Validation Accuracy: 0.719400
Epoch 41, CIFAR-10 Batch 3:  Loss:     0.0063 Validation Accuracy: 0.730600
Epoch 41, CIFAR-10 Batch 4:  Loss:     0.0230 Validation Accuracy: 0.724000
Epoch 41, CIFAR-10 Batch 5:  Loss:     0.0037 Validation Accuracy: 0.724400
Epoch 42, CIFAR-10 Batch 1:  Loss:     0.0111 Validation Accuracy: 0.724000
Epoch 42, CIFAR-10 Batch 2:  Loss:     0.0131 Validation Accuracy: 0.724000
Epoch 42, CIFAR-10 Batch 3:  Loss:     0.0058 Validation Accuracy: 0.724600
Epoch 42, CIFAR-10 Batch 4:  Loss:     0.0203 Validation Accuracy: 0.721200
Epoch 42, CIFAR-10 Batch 5:  Loss:     0.0062 Validation Accuracy: 0.723200
Epoch 43, CIFAR-10 Batch 1:  Loss:     0.0144 Validation Accuracy: 0.730600
Epoch 43, CIFAR-10 Batch 2:  Loss:     0.0098 Validation Accuracy: 0.719400
Epoch 43, CIFAR-10 Batch 3:  Loss:     0.0065 Validation Accuracy: 0.724400
Epoch 43, CIFAR-10 Batch 4:  Loss:     0.0122 Validation Accuracy: 0.721400
Epoch 43, CIFAR-10 Batch 5:  Loss:     0.0049 Validation Accuracy: 0.722600
Epoch 44, CIFAR-10 Batch 1:  Loss:     0.0114 Validation Accuracy: 0.716400
Epoch 44, CIFAR-10 Batch 2:  Loss:     0.0113 Validation Accuracy: 0.717800
Epoch 44, CIFAR-10 Batch 3:  Loss:     0.0063 Validation Accuracy: 0.730800
Epoch 44, CIFAR-10 Batch 4:  Loss:     0.0202 Validation Accuracy: 0.722200
Epoch 44, CIFAR-10 Batch 5:  Loss:     0.0106 Validation Accuracy: 0.725000
Epoch 45, CIFAR-10 Batch 1:  Loss:     0.0162 Validation Accuracy: 0.728000
Epoch 45, CIFAR-10 Batch 2:  Loss:     0.0105 Validation Accuracy: 0.716400
Epoch 45, CIFAR-10 Batch 3:  Loss:     0.0061 Validation Accuracy: 0.722800
Epoch 45, CIFAR-10 Batch 4:  Loss:     0.0169 Validation Accuracy: 0.715000
Epoch 45, CIFAR-10 Batch 5:  Loss:     0.0073 Validation Accuracy: 0.724400
Epoch 46, CIFAR-10 Batch 1:  Loss:     0.0148 Validation Accuracy: 0.727800
Epoch 46, CIFAR-10 Batch 2:  Loss:     0.0111 Validation Accuracy: 0.720000
Epoch 46, CIFAR-10 Batch 3:  Loss:     0.0043 Validation Accuracy: 0.722000
Epoch 46, CIFAR-10 Batch 4:  Loss:     0.0220 Validation Accuracy: 0.718800
Epoch 46, CIFAR-10 Batch 5:  Loss:     0.0036 Validation Accuracy: 0.721600
Epoch 47, CIFAR-10 Batch 1:  Loss:     0.0133 Validation Accuracy: 0.730200
Epoch 47, CIFAR-10 Batch 2:  Loss:     0.0087 Validation Accuracy: 0.722800
Epoch 47, CIFAR-10 Batch 3:  Loss:     0.0245 Validation Accuracy: 0.693000
Epoch 47, CIFAR-10 Batch 4:  Loss:     0.0180 Validation Accuracy: 0.716600
Epoch 47, CIFAR-10 Batch 5:  Loss:     0.0036 Validation Accuracy: 0.725200
Epoch 48, CIFAR-10 Batch 1:  Loss:     0.0085 Validation Accuracy: 0.728000
Epoch 48, CIFAR-10 Batch 2:  Loss:     0.0066 Validation Accuracy: 0.720800
Epoch 48, CIFAR-10 Batch 3:  Loss:     0.0045 Validation Accuracy: 0.712400
Epoch 48, CIFAR-10 Batch 4:  Loss:     0.0223 Validation Accuracy: 0.716600
Epoch 48, CIFAR-10 Batch 5:  Loss:     0.0074 Validation Accuracy: 0.719600
Epoch 49, CIFAR-10 Batch 1:  Loss:     0.0087 Validation Accuracy: 0.724600
Epoch 49, CIFAR-10 Batch 2:  Loss:     0.0074 Validation Accuracy: 0.724400
Epoch 49, CIFAR-10 Batch 3:  Loss:     0.0061 Validation Accuracy: 0.724400
Epoch 49, CIFAR-10 Batch 4:  Loss:     0.0333 Validation Accuracy: 0.715000
Epoch 49, CIFAR-10 Batch 5:  Loss:     0.0061 Validation Accuracy: 0.723600
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.0115 Validation Accuracy: 0.716600
Epoch 50, CIFAR-10 Batch 2:  Loss:     0.0084 Validation Accuracy: 0.722600
Epoch 50, CIFAR-10 Batch 3:  Loss:     0.0080 Validation Accuracy: 0.715400
Epoch 50, CIFAR-10 Batch 4:  Loss:     0.0100 Validation Accuracy: 0.720600
Epoch 50, CIFAR-10 Batch 5:  Loss:     0.0046 Validation Accuracy: 0.728000
Epoch 51, CIFAR-10 Batch 1:  Loss:     0.0164 Validation Accuracy: 0.727400
Epoch 51, CIFAR-10 Batch 2:  Loss:     0.0048 Validation Accuracy: 0.716600
Epoch 51, CIFAR-10 Batch 3:  Loss:     0.0060 Validation Accuracy: 0.715800
Epoch 51, CIFAR-10 Batch 4:  Loss:     0.0168 Validation Accuracy: 0.729000
Epoch 51, CIFAR-10 Batch 5:  Loss:     0.0067 Validation Accuracy: 0.728400
Epoch 52, CIFAR-10 Batch 1:  Loss:     0.0091 Validation Accuracy: 0.724800
Epoch 52, CIFAR-10 Batch 2:  Loss:     0.0029 Validation Accuracy: 0.721200
Epoch 52, CIFAR-10 Batch 3:  Loss:     0.0057 Validation Accuracy: 0.715400
Epoch 52, CIFAR-10 Batch 4:  Loss:     0.0166 Validation Accuracy: 0.717400
Epoch 52, CIFAR-10 Batch 5:  Loss:     0.0026 Validation Accuracy: 0.723600
Epoch 53, CIFAR-10 Batch 1:  Loss:     0.0108 Validation Accuracy: 0.717800
Epoch 53, CIFAR-10 Batch 2:  Loss:     0.0033 Validation Accuracy: 0.725200
Epoch 53, CIFAR-10 Batch 3:  Loss:     0.0076 Validation Accuracy: 0.719600
Epoch 53, CIFAR-10 Batch 4:  Loss:     0.0089 Validation Accuracy: 0.724600
Epoch 53, CIFAR-10 Batch 5:  Loss:     0.0012 Validation Accuracy: 0.730000
Epoch 54, CIFAR-10 Batch 1:  Loss:     0.0097 Validation Accuracy: 0.716600
Epoch 54, CIFAR-10 Batch 2:  Loss:     0.0056 Validation Accuracy: 0.727600
Epoch 54, CIFAR-10 Batch 3:  Loss:     0.0036 Validation Accuracy: 0.725600
Epoch 54, CIFAR-10 Batch 4:  Loss:     0.0056 Validation Accuracy: 0.725200
Epoch 54, CIFAR-10 Batch 5:  Loss:     0.0037 Validation Accuracy: 0.723000
Epoch 55, CIFAR-10 Batch 1:  Loss:     0.0057 Validation Accuracy: 0.719800
Epoch 55, CIFAR-10 Batch 2:  Loss:     0.0049 Validation Accuracy: 0.726200
Epoch 55, CIFAR-10 Batch 3:  Loss:     0.0036 Validation Accuracy: 0.722000
Epoch 55, CIFAR-10 Batch 4:  Loss:     0.0087 Validation Accuracy: 0.724400
Epoch 55, CIFAR-10 Batch 5:  Loss:     0.0049 Validation Accuracy: 0.722400
Epoch 56, CIFAR-10 Batch 1:  Loss:     0.0052 Validation Accuracy: 0.724000
Epoch 56, CIFAR-10 Batch 2:  Loss:     0.0055 Validation Accuracy: 0.731000
Epoch 56, CIFAR-10 Batch 3:  Loss:     0.0021 Validation Accuracy: 0.728200
Epoch 56, CIFAR-10 Batch 4:  Loss:     0.0107 Validation Accuracy: 0.728200
Epoch 56, CIFAR-10 Batch 5:  Loss:     0.0013 Validation Accuracy: 0.722000
Epoch 57, CIFAR-10 Batch 1:  Loss:     0.0059 Validation Accuracy: 0.722800
Epoch 57, CIFAR-10 Batch 2:  Loss:     0.0090 Validation Accuracy: 0.730400
Epoch 57, CIFAR-10 Batch 3:  Loss:     0.0028 Validation Accuracy: 0.720000
Epoch 57, CIFAR-10 Batch 4:  Loss:     0.0035 Validation Accuracy: 0.733200
Epoch 57, CIFAR-10 Batch 5:  Loss:     0.0016 Validation Accuracy: 0.726000
Epoch 58, CIFAR-10 Batch 1:  Loss:     0.0033 Validation Accuracy: 0.724800
Epoch 58, CIFAR-10 Batch 2:  Loss:     0.0030 Validation Accuracy: 0.725800
Epoch 58, CIFAR-10 Batch 3:  Loss:     0.0021 Validation Accuracy: 0.732200
Epoch 58, CIFAR-10 Batch 4:  Loss:     0.0035 Validation Accuracy: 0.724800
Epoch 58, CIFAR-10 Batch 5:  Loss:     0.0014 Validation Accuracy: 0.725600
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.0035 Validation Accuracy: 0.731000
Epoch 59, CIFAR-10 Batch 2:  Loss:     0.0056 Validation Accuracy: 0.727000
Epoch 59, CIFAR-10 Batch 3:  Loss:     0.0009 Validation Accuracy: 0.729600
Epoch 59, CIFAR-10 Batch 4:  Loss:     0.0090 Validation Accuracy: 0.724000
Epoch 59, CIFAR-10 Batch 5:  Loss:     0.0022 Validation Accuracy: 0.726000
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.0036 Validation Accuracy: 0.728000
Epoch 60, CIFAR-10 Batch 2:  Loss:     0.0058 Validation Accuracy: 0.726800
Epoch 60, CIFAR-10 Batch 3:  Loss:     0.0013 Validation Accuracy: 0.731200
Epoch 60, CIFAR-10 Batch 4:  Loss:     0.0031 Validation Accuracy: 0.723800
Epoch 60, CIFAR-10 Batch 5:  Loss:     0.0008 Validation Accuracy: 0.722800
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.0090 Validation Accuracy: 0.721200
Epoch 61, CIFAR-10 Batch 2:  Loss:     0.0028 Validation Accuracy: 0.723800
Epoch 61, CIFAR-10 Batch 3:  Loss:     0.0040 Validation Accuracy: 0.725800
Epoch 61, CIFAR-10 Batch 4:  Loss:     0.0076 Validation Accuracy: 0.724000
Epoch 61, CIFAR-10 Batch 5:  Loss:     0.0013 Validation Accuracy: 0.729000
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.0068 Validation Accuracy: 0.718600
Epoch 62, CIFAR-10 Batch 2:  Loss:     0.0035 Validation Accuracy: 0.729400
Epoch 62, CIFAR-10 Batch 3:  Loss:     0.0030 Validation Accuracy: 0.723600
Epoch 62, CIFAR-10 Batch 4:  Loss:     0.0048 Validation Accuracy: 0.717200
Epoch 62, CIFAR-10 Batch 5:  Loss:     0.0017 Validation Accuracy: 0.713200
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.0073 Validation Accuracy: 0.720800
Epoch 63, CIFAR-10 Batch 2:  Loss:     0.0037 Validation Accuracy: 0.722400
Epoch 63, CIFAR-10 Batch 3:  Loss:     0.0018 Validation Accuracy: 0.720600
Epoch 63, CIFAR-10 Batch 4:  Loss:     0.0060 Validation Accuracy: 0.720200
Epoch 63, CIFAR-10 Batch 5:  Loss:     0.0006 Validation Accuracy: 0.724400
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.0065 Validation Accuracy: 0.716400
Epoch 64, CIFAR-10 Batch 2:  Loss:     0.0016 Validation Accuracy: 0.723200
Epoch 64, CIFAR-10 Batch 3:  Loss:     0.0013 Validation Accuracy: 0.723400
Epoch 64, CIFAR-10 Batch 4:  Loss:     0.0060 Validation Accuracy: 0.725000
Epoch 64, CIFAR-10 Batch 5:  Loss:     0.0006 Validation Accuracy: 0.727800
Epoch 65, CIFAR-10 Batch 1:  Loss:     0.0035 Validation Accuracy: 0.730400
Epoch 65, CIFAR-10 Batch 2:  Loss:     0.0125 Validation Accuracy: 0.723400
Epoch 65, CIFAR-10 Batch 3:  Loss:     0.0024 Validation Accuracy: 0.727800
Epoch 65, CIFAR-10 Batch 4:  Loss:     0.0070 Validation Accuracy: 0.721800
Epoch 65, CIFAR-10 Batch 5:  Loss:     0.0004 Validation Accuracy: 0.726200
Epoch 66, CIFAR-10 Batch 1:  Loss:     0.0039 Validation Accuracy: 0.725200
Epoch 66, CIFAR-10 Batch 2:  Loss:     0.0026 Validation Accuracy: 0.724600
Epoch 66, CIFAR-10 Batch 3:  Loss:     0.0026 Validation Accuracy: 0.729200
Epoch 66, CIFAR-10 Batch 4:  Loss:     0.0083 Validation Accuracy: 0.716000
Epoch 66, CIFAR-10 Batch 5:  Loss:     0.0013 Validation Accuracy: 0.721200
Epoch 67, CIFAR-10 Batch 1:  Loss:     0.0015 Validation Accuracy: 0.718800
Epoch 67, CIFAR-10 Batch 2:  Loss:     0.0029 Validation Accuracy: 0.728400
Epoch 67, CIFAR-10 Batch 3:  Loss:     0.0015 Validation Accuracy: 0.726400
Epoch 67, CIFAR-10 Batch 4:  Loss:     0.0072 Validation Accuracy: 0.717600
Epoch 67, CIFAR-10 Batch 5:  Loss:     0.0030 Validation Accuracy: 0.721200
Epoch 68, CIFAR-10 Batch 1:  Loss:     0.0028 Validation Accuracy: 0.728200
Epoch 68, CIFAR-10 Batch 2:  Loss:     0.0024 Validation Accuracy: 0.723800
Epoch 68, CIFAR-10 Batch 3:  Loss:     0.0014 Validation Accuracy: 0.727200
Epoch 68, CIFAR-10 Batch 4:  Loss:     0.0023 Validation Accuracy: 0.724600
Epoch 68, CIFAR-10 Batch 5:  Loss:     0.0010 Validation Accuracy: 0.718400
Epoch 69, CIFAR-10 Batch 1:  Loss:     0.0043 Validation Accuracy: 0.724400
Epoch 69, CIFAR-10 Batch 2:  Loss:     0.0015 Validation Accuracy: 0.726800
Epoch 69, CIFAR-10 Batch 3:  Loss:     0.0032 Validation Accuracy: 0.719400
Epoch 69, CIFAR-10 Batch 4:  Loss:     0.0046 Validation Accuracy: 0.723200
Epoch 69, CIFAR-10 Batch 5:  Loss:     0.0007 Validation Accuracy: 0.725400
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.0011 Validation Accuracy: 0.723400
Epoch 70, CIFAR-10 Batch 2:  Loss:     0.0010 Validation Accuracy: 0.728600
Epoch 70, CIFAR-10 Batch 3:  Loss:     0.0023 Validation Accuracy: 0.723800
Epoch 70, CIFAR-10 Batch 4:  Loss:     0.0026 Validation Accuracy: 0.724800
Epoch 70, CIFAR-10 Batch 5:  Loss:     0.0008 Validation Accuracy: 0.719600

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [26]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.7095530063291139

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.