Using cuDNN version 5110 on context None
Mapped name None to device cuda0: GeForce GTX 1080 Ti (0000:01:00.0)
D, K, N, M: 1 2 24229 4
iteration: 0
shape y: (27, 1, 2)
i: 0 cost: nan classification rate: 0.5298609104791778
duration: 177.09498119354248
iteration: 1
shape y: (27, 1, 2)
i: 1 cost: nan classification rate: 0.5324611003343102
duration: 175.81551504135132
iteration: 2
shape y: (27, 1, 2)
i: 2 cost: nan classification rate: 0.5324611003343102
duration: 175.8624029159546
iteration: 3
shape y: (27, 1, 2)
i: 3 cost: nan classification rate: 0.5324611003343102
duration: 175.87741804122925
iteration: 4
shape y: (27, 1, 2)
i: 4 cost: nan classification rate: 0.5324611003343102
duration: 175.4425926208496
iteration: 5
shape y: (27, 1, 2)
i: 5 cost: nan classification rate: 0.5324611003343102
duration: 176.13470792770386
iteration: 6
shape y: (27, 1, 2)
i: 6 cost: nan classification rate: 0.5324611003343102
duration: 177.26166033744812
iteration: 7
shape y: (27, 1, 2)
i: 7 cost: nan classification rate: 0.5324611003343102
duration: 178.00531554222107
iteration: 8
shape y: (27, 1, 2)
i: 8 cost: nan classification rate: 0.5324611003343102
duration: 178.00516200065613
iteration: 9
shape y: (27, 1, 2)
i: 9 cost: nan classification rate: 0.5324611003343102
duration: 178.12058520317078
iteration: 10
shape y: (27, 1, 2)
i: 10 cost: nan classification rate: 0.5324611003343102
duration: 176.07921695709229
iteration: 11
shape y: (27, 1, 2)
i: 11 cost: nan classification rate: 0.5324611003343102
duration: 175.98539209365845
iteration: 12
shape y: (27, 1, 2)
i: 12 cost: nan classification rate: 0.5324611003343102
duration: 176.25476670265198
iteration: 13
shape y: (27, 1, 2)
i: 13 cost: nan classification rate: 0.5324611003343102
duration: 176.03014731407166
iteration: 14
shape y: (27, 1, 2)
i: 14 cost: nan classification rate: 0.5324611003343102
duration: 176.04616689682007
iteration: 15
shape y: (27, 1, 2)
i: 15 cost: nan classification rate: 0.5324611003343102
duration: 176.25447249412537
iteration: 16
shape y: (27, 1, 2)
i: 16 cost: nan classification rate: 0.5324611003343102
duration: 175.82351398468018
iteration: 17
shape y: (27, 1, 2)
i: 17 cost: nan classification rate: 0.5324611003343102
duration: 175.98437356948853
iteration: 18
shape y: (27, 1, 2)
i: 18 cost: nan classification rate: 0.5324611003343102
duration: 175.81087231636047
iteration: 19
shape y: (27, 1, 2)
i: 19 cost: nan classification rate: 0.5324611003343102
duration: 175.56478786468506
iteration: 20
shape y: (27, 1, 2)
i: 20 cost: nan classification rate: 0.5324611003343102
duration: 175.7314648628235
iteration: 21
shape y: (27, 1, 2)
i: 21 cost: nan classification rate: 0.5324611003343102
duration: 175.90101218223572
iteration: 22
shape y: (27, 1, 2)
i: 22 cost: nan classification rate: 0.5324611003343102
duration: 175.89651203155518
iteration: 23
shape y: (27, 1, 2)
i: 23 cost: nan classification rate: 0.5324611003343102
duration: 176.0100758075714
iteration: 24
shape y: (27, 1, 2)
i: 24 cost: nan classification rate: 0.5324611003343102
duration: 175.88544845581055
iteration: 25
shape y: (27, 1, 2)
i: 25 cost: nan classification rate: 0.5324611003343102
duration: 175.03661608695984
iteration: 26
shape y: (27, 1, 2)
i: 26 cost: nan classification rate: 0.5324611003343102
duration: 174.6952362060547
iteration: 27
shape y: (27, 1, 2)
i: 27 cost: nan classification rate: 0.5324611003343102
duration: 176.8682734966278
iteration: 28
shape y: (27, 1, 2)
i: 28 cost: nan classification rate: 0.5324611003343102
duration: 174.73530435562134
iteration: 29
shape y: (27, 1, 2)
i: 29 cost: nan classification rate: 0.5324611003343102
duration: 175.17007422447205
iteration: 30
shape y: (27, 1, 2)
i: 30 cost: nan classification rate: 0.5324611003343102
duration: 175.14048719406128
iteration: 31
shape y: (27, 1, 2)
i: 31 cost: nan classification rate: 0.5324611003343102
duration: 175.3279356956482
iteration: 32
shape y: (27, 1, 2)
i: 32 cost: nan classification rate: 0.5324611003343102
duration: 175.4613676071167
iteration: 33
shape y: (27, 1, 2)
i: 33 cost: nan classification rate: 0.5324611003343102
duration: 175.45380878448486
iteration: 34
shape y: (27, 1, 2)
i: 34 cost: nan classification rate: 0.5324611003343102
duration: 175.084308385849
iteration: 35
shape y: (27, 1, 2)
i: 35 cost: nan classification rate: 0.5324611003343102
duration: 175.73502373695374
iteration: 36
shape y: (27, 1, 2)
i: 36 cost: nan classification rate: 0.5324611003343102
duration: 175.662926197052
iteration: 37
shape y: (27, 1, 2)
i: 37 cost: nan classification rate: 0.5324611003343102
duration: 177.029123544693
iteration: 38
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-11-a61a664af64a> in <module>()
6
7 clf = SimpleRNNClassifier(4)
----> 8 clf.fit(X_t_f, Y_t, show_fig=True)
S:\git\tacticsiege\tactictoolkit\ttk\sandbox\udemy\SimpleRNNClassifier.py in fit(self, X, Y, learning_rate, mu, reg, activation, epochs, show_fig)
98 #print ('X[j]:', X[j], 'Y[j]:', Y[j])
99
--> 100 c, p, rout = self.train_op(X[j], Y[j])
101 #print ('c:', c)
102 cost += c
S:\Anaconda3\lib\site-packages\theano\compile\function_module.py in __call__(self, *args, **kwargs)
882 try:
883 outputs =\
--> 884 self.fn() if output_subset is None else\
885 self.fn(output_subset=output_subset)
886 except Exception:
S:\Anaconda3\lib\site-packages\theano\scan_module\scan_op.py in rval(p, i, o, n, allow_gc)
987 def rval(p=p, i=node_input_storage, o=node_output_storage, n=node,
988 allow_gc=allow_gc):
--> 989 r = p(n, [x[0] for x in i], o)
990 for o in node.outputs:
991 compute_map[o][0] = True
S:\Anaconda3\lib\site-packages\theano\scan_module\scan_op.py in p(node, args, outs)
976 args,
977 outs,
--> 978 self, node)
979 except (ImportError, theano.gof.cmodule.MissingGXX):
980 p = self.execute
theano/scan_module/scan_perform.pyx in theano.scan_module.scan_perform.perform (C:\Users\TacticSiege\AppData\Local\Theano\compiledir_Windows-10-10.0.15063-SP0-Intel64_Family_6_Model_158_Stepping_9_GenuineIntel-3.6.2-64\scan_perform\mod.cpp:4490)()
S:\Anaconda3\lib\site-packages\theano\gof\op.py in rval(p, i, o, n)
869 if params is graph.NoParams:
870 # default arguments are stored in the closure of `rval`
--> 871 def rval(p=p, i=node_input_storage, o=node_output_storage, n=node):
872 r = p(n, [x[0] for x in i], o)
873 for o in node.outputs:
KeyboardInterrupt: