In [1]:
import csv
f = open('exampledata.txt', 'r')
fcsv = csv.reader(f)
d = []
try:
while True:
d.append(fcsv.next())
except:
pass
f.close()
print len(d)
In [2]:
import numpy as np
from sklearn import linear_model
In [3]:
for i in range(len(d)):
for j in range(2):
d[i][j] = float(d[i][j])
x = []
y = []
for i in range(len(d)):
x.append(d[i][1:])
y.append(d[i][0])
In [11]:
clf = linear_model.SGDRegressor(alpha=0.0, loss='squared_loss',n_iter=1000, eta0=0.001, learning_rate='constant' )
sgd = clf.fit(x,y, coef_init=[0], intercept_init=[0])
print [sgd.intercept_, sgd.coef_]
In [ ]: