Train on 50000 samples, validate on 10000 samples
Epoch 1/12
50000/50000 [==============================] - 8s - loss: 0.2783 - acc: 0.9135 - val_loss: 0.0620 - val_acc: 0.9798
Epoch 2/12
50000/50000 [==============================] - 8s - loss: 0.1018 - acc: 0.9687 - val_loss: 0.0642 - val_acc: 0.9791
Epoch 3/12
50000/50000 [==============================] - 8s - loss: 0.0759 - acc: 0.9770 - val_loss: 0.0387 - val_acc: 0.9858
Epoch 4/12
50000/50000 [==============================] - 8s - loss: 0.0646 - acc: 0.9808 - val_loss: 0.0343 - val_acc: 0.9885
Epoch 5/12
50000/50000 [==============================] - 7s - loss: 0.0558 - acc: 0.9828 - val_loss: 0.0315 - val_acc: 0.9890
Epoch 6/12
50000/50000 [==============================] - 7s - loss: 0.0481 - acc: 0.9854 - val_loss: 0.0372 - val_acc: 0.9890
Epoch 7/12
50000/50000 [==============================] - 8s - loss: 0.0436 - acc: 0.9862 - val_loss: 0.0258 - val_acc: 0.9905
Epoch 8/12
50000/50000 [==============================] - 8s - loss: 0.0401 - acc: 0.9875 - val_loss: 0.0274 - val_acc: 0.9903
Epoch 9/12
50000/50000 [==============================] - 8s - loss: 0.0370 - acc: 0.9885 - val_loss: 0.0265 - val_acc: 0.9915
Epoch 10/12
50000/50000 [==============================] - 8s - loss: 0.0331 - acc: 0.9895 - val_loss: 0.0289 - val_acc: 0.9915
Epoch 11/12
50000/50000 [==============================] - 8s - loss: 0.0311 - acc: 0.9900 - val_loss: 0.0314 - val_acc: 0.9909
Epoch 12/12
50000/50000 [==============================] - 8s - loss: 0.0286 - acc: 0.9911 - val_loss: 0.0273 - val_acc: 0.9908