In [18]:
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns;

In [19]:
p1 = np.random.normal(10, 3, size=1000)
p2 = np.random.normal(20, 4, size= 1000)

In [20]:
plt.hist(p1);

plt.hist(p2);



In [21]:
plt.hist(p1 + p2);



In [11]:
total = p1 + p2

In [17]:
np.sum(total < 44)* 100/np.size(total)


Out[17]:
99.5

In [32]:
sns.distplot(p1);
sns.distplot(p2);
# sns.distplot(total);



In [33]:
from scipy.stats.stats import pearsonr

In [35]:
r, p = pearsonr(p1, p2)

In [40]:
r_vector = []
p_vector = []
for i in range(1000):
    p1 = np.random.normal(size=100)
    p2 = np.random.normal(size=100)
    r,p = pearsonr(p1, p2)
    r_vector.append(r)
    p_vector.append(p)
    
plt.plot(r_vector);



In [41]:
plt.plot(p_vector);



In [45]:
np.sum(np.array(p_vector) < 0.10)


Out[45]:
86

In [ ]: