In [2]:
# import libraries
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np; import pandas as pd
In [3]:
claims = pd.read_csv('insurance.csv')
In [4]:
claims.shape
Out[4]:
In [5]:
claims.columns
Out[5]:
In [6]:
claims.head()
Out[6]:
In [7]:
sns.distplot(claims.charges)
Out[7]:
In [8]:
sns.violinplot(x="sex", y="charges", data=claims)
Out[8]:
In [9]:
sns.violinplot(x="sex", y="charges", hue='smoker', data=claims)
Out[9]:
In [10]:
sns.violinplot(x='sex', y='charges', hue='smoker', data=claims, inner='quartile')
Out[10]:
In [11]:
claims.children.unique()
Out[11]:
In [12]:
sns.violinplot(x='children', y='charges', hue='smoker', data=claims, inner='quartile')
Out[12]:
In [16]:
g = sns.PairGrid(claims, hue='smoker')
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend();
In [18]:
g = sns.PairGrid(claims, hue='sex')
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend();
In [20]:
g = sns.pairplot(claims, hue='sex', diag_kind="kde")
In [21]:
g = sns.pairplot(claims, hue='smoker', diag_kind="kde")
In [ ]: