Numpy uses array whereas pandas used scaler
In [2]:
import numpy as np
In [13]:
num = np.array([3,4,2,5,7,23,56,23,7,23,89,43,676,43])
num
Out[13]:
In [17]:
print "Mean :",num.mean()
print "sum :",num.sum()
print "max :",num.max()
print "std :",num.std()
In [18]:
#slicing
num[:5]
Out[18]:
In [19]:
#find index of any element let say max
print "index of max :",num.argmax()
In [21]:
print "data Type of array :",num.dtype
In [22]:
a=np.array([5,6,15])
b=np.array([5,4,-5])
In [26]:
# Addition
print "{} + {} = {}".format(a,b,a+b)
In [27]:
print "{} * {} = {}".format(a,b,a*b)
In [28]:
print "{} / {} = {}".format(a,b,a/b)
In [34]:
# If size mismatch then error occure
b=np.array([5,4,-5,5])
print "{} + {} = {}".format(a,b,a+b)
In [30]:
print "{} + {} = {}".format(a,3,a+3)
In [31]:
print "{} * {} = {}".format(a,3,a*3)
In [32]:
print "{} / {} = {}".format(a,3,a/3)
In [36]:
num=np.array([5,6,15,65,32,656,23,435,2,45,21])
bl=np.array([False,True,True,False,True,False,True,False,True,True,False])
In [37]:
num[6]
Out[37]:
In [40]:
num[bl]
Out[40]:
In [41]:
num[num>100]
Out[41]:
In [42]:
num[num<50]
Out[42]:
In [45]:
a=np.array([5,6,15])
b=a
a += 2
print b
print "this happen becouse a and b both point to same array and += is In-place operation so it maintain that"
In [47]:
a=np.array([5,6,15])
b=a
a = a + 2
print b
In [49]:
a=np.array([5,6,15])
b=a[:3]
b[0]=1000
print a,"Reason is similar as +="
In [51]:
import pandas as pd
In [53]:
num = pd.Series([3,4,2,5,7,23,56,23,7,23,89,43,676,43])
num
Out[53]:
In [54]:
num.describe()
Out[54]: