Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x24e88eb9cc0>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x24e88f75470>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    inputs_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real') 
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
    return inputs_real, inputs_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).


In [6]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    alpha=0.1
    with tf.variable_scope('discriminator', reuse=reuse):
        layers = tf.layers.conv2d(images, 64, 3, strides=2, padding='same')
        layers = tf.maximum(alpha * layers, layers)
        #layers = tf.nn.relu(layers)

        layers = tf.layers.conv2d(layers, 128, 3, strides=2, padding='same')
        layers = tf.layers.batch_normalization(layers, training=True)
        layers = tf.maximum(alpha * layers, layers)
        #layers = tf.nn.relu(layers)

        layers = tf.layers.conv2d(layers, 256, 3, strides=2, padding='same')
        layers = tf.layers.batch_normalization(layers, training=True)
        layers = tf.maximum(alpha * layers, layers)
        #layers = tf.nn.relu(layers)
        
        flatten = tf.reshape(layers, (-1, 4 * 4 * 256))
        logits = tf.layers.dense(flatten, 1)
        output = tf.nn.sigmoid(logits)
        
    return output, logits

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [7]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    alpha=0.1
    with tf.variable_scope('generator', reuse=not is_train):
        layers = tf.layers.dense(z, 7*7*1024)
        layers = tf.reshape(layers, (-1, 7, 7, 1024))
        layers = tf.layers.batch_normalization(layers, training=is_train)
        layers = tf.maximum(alpha * layers, layers)
        #layers = tf.nn.relu(layers)

        layers = tf.layers.conv2d_transpose(layers, 512, 3, strides=2, padding='same')
        layers = tf.layers.batch_normalization(layers, training=is_train)
        r1 = tf.nn.relu(layers)
                
        layers = tf.layers.conv2d_transpose(layers, 256, 3, strides=2, padding='same')
        layers = tf.layers.batch_normalization(layers, training=is_train)
        layers = tf.maximum(alpha * layers, layers)
        #layers = tf.nn.relu(layers)

        layers = tf.layers.conv2d_transpose(layers, out_channel_dim, 3, strides=2, padding='same')
        layers = tf.image.resize_images(layers, size=(28, 28))
        
        output = tf.nn.tanh(layers)
        
    return output

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [8]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    smooth = 0.1
    g_model = generator(input_z, out_channel_dim, is_train=True)
    
    d_model_real, d_logits_real = discriminator(input_real, reuse=False)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, \
                                                          labels=tf.ones_like(d_model_real) * (1 - smooth)))
    
    d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, \
                                                            labels=tf.zeros_like(d_model_fake)))
    d_loss = d_loss_real + d_loss_fake
    
    g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [9]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    t_vars = tf.trainable_variables()
    g_vars = [var for var in t_vars if var.name.startswith('generator')]
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    
    d_train_opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='generator')):
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [10]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [11]:
import time

def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    print("Parameters:")
    print("epoch_count: {}".format(epoch_count))
    print("batch_size: {}".format(batch_size))
    print("z_dim: {}".format(z_dim))
    print("learning_rate: {}".format(learning_rate))
    print("beta1: {}".format(beta1))
    print("data_shape: {}".format(data_shape))
    
    if data_image_mode == "RGB":
        out_channel_dim = 3
    else:
        out_channel_dim = 1
    
    real_input, z_input, lr = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    print("Getting model inputs... Ok")
    
    d_loss, g_loss = model_loss(real_input, z_input, out_channel_dim)
    print("Calculating model loss... Ok")
    
    d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)
    print("Getting model optimizers ... Ok")

    count = 1;    
    t = time.process_time()

    losses = []
    print("Starting training")
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                
                batch_images = 2 * batch_images
                batch_z = np.random.uniform(-1, 1, (batch_size, z_dim))
                sess.run(d_opt, feed_dict = {lr: learning_rate, real_input: batch_images, z_input : batch_z})
                sess.run(g_opt, feed_dict = {lr: learning_rate, z_input: batch_z})
                
                if count % 10 == 0:
                    train_loss_d = sess.run(d_loss, feed_dict = { real_input : batch_images, z_input : batch_z})
                    train_loss_g = sess.run(g_loss, feed_dict =  { z_input : batch_z})
                    losses.append((train_loss_d, train_loss_g))
                    elapsed_time = time.process_time() - t
                    print("Epoch {}/{}... Step {}...".format(epoch_i+1, epochs, count),
                          "d_loss: {:.4f}...".format(train_loss_d),
                          "g_loss: {:.4f}".format(train_loss_g),
                          "Elapsed: {0:g}m{0:g}s".format(elapsed_time//60,elapsed_time % 60))
                    
                if count % 100 == 0:
                    print("Sample output")
                    show_generator_output(sess, 10, z_input, out_channel_dim, data_image_mode)

                count +=1
    
    fig, ax = pyplot.subplots()
    losses = np.array(losses)
    pyplot.plot(losses.T[0], label='Discriminator')
    pyplot.plot(losses.T[1], label='Generator')
    pyplot.title("Training Losses")
    pyplot.legend()
    print("Training done")

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [12]:
batch_size = 32
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5
tf.reset_default_graph()

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Parameters:
epoch_count: 2
batch_size: 32
z_dim: 100
learning_rate: 0.0002
beta1: 0.5
data_shape: (60000, 28, 28, 1)
Getting model inputs... Ok
Calculating model loss... Ok
Getting model optimizers ... Ok
Starting training
Epoch 1/2... Step 10... d_loss: 1.8067... g_loss: 0.3616 Elapsed: 0m0s
Epoch 1/2... Step 20... d_loss: 1.4424... g_loss: 0.4829 Elapsed: 0m0s
Epoch 1/2... Step 30... d_loss: 0.7536... g_loss: 1.8444 Elapsed: 0m0s
Epoch 1/2... Step 40... d_loss: 1.6816... g_loss: 0.3900 Elapsed: 0m0s
Epoch 1/2... Step 50... d_loss: 1.4499... g_loss: 0.6133 Elapsed: 0m0s
Epoch 1/2... Step 60... d_loss: 1.8760... g_loss: 0.3455 Elapsed: 0m0s
Epoch 1/2... Step 70... d_loss: 1.6663... g_loss: 0.5179 Elapsed: 0m0s
Epoch 1/2... Step 80... d_loss: 1.6335... g_loss: 0.5404 Elapsed: 0m0s
Epoch 1/2... Step 90... d_loss: 1.5671... g_loss: 0.6184 Elapsed: 0m0s
Epoch 1/2... Step 100... d_loss: 1.5648... g_loss: 0.6309 Elapsed: 0m0s
Sample output
Epoch 1/2... Step 110... d_loss: 1.6686... g_loss: 0.3917 Elapsed: 0m0s
Epoch 1/2... Step 120... d_loss: 1.6187... g_loss: 0.6545 Elapsed: 0m0s
Epoch 1/2... Step 130... d_loss: 1.4443... g_loss: 0.8400 Elapsed: 0m0s
Epoch 1/2... Step 140... d_loss: 1.3861... g_loss: 0.6160 Elapsed: 0m0s
Epoch 1/2... Step 150... d_loss: 1.5159... g_loss: 0.7748 Elapsed: 1m1s
Epoch 1/2... Step 160... d_loss: 1.3186... g_loss: 0.6390 Elapsed: 1m1s
Epoch 1/2... Step 170... d_loss: 1.3832... g_loss: 0.6429 Elapsed: 1m1s
Epoch 1/2... Step 180... d_loss: 1.3194... g_loss: 0.6025 Elapsed: 1m1s
Epoch 1/2... Step 190... d_loss: 1.0992... g_loss: 0.9563 Elapsed: 1m1s
Epoch 1/2... Step 200... d_loss: 1.4970... g_loss: 0.4410 Elapsed: 1m1s
Sample output
Epoch 1/2... Step 210... d_loss: 1.3973... g_loss: 0.5585 Elapsed: 1m1s
Epoch 1/2... Step 220... d_loss: 0.8934... g_loss: 1.2798 Elapsed: 1m1s
Epoch 1/2... Step 230... d_loss: 0.8719... g_loss: 1.2909 Elapsed: 1m1s
Epoch 1/2... Step 240... d_loss: 1.0746... g_loss: 0.9536 Elapsed: 1m1s
Epoch 1/2... Step 250... d_loss: 1.1092... g_loss: 0.7749 Elapsed: 1m1s
Epoch 1/2... Step 260... d_loss: 0.9145... g_loss: 1.2572 Elapsed: 1m1s
Epoch 1/2... Step 270... d_loss: 1.0989... g_loss: 1.0129 Elapsed: 1m1s
Epoch 1/2... Step 280... d_loss: 1.2610... g_loss: 0.6392 Elapsed: 1m1s
Epoch 1/2... Step 290... d_loss: 1.3127... g_loss: 0.6366 Elapsed: 2m2s
Epoch 1/2... Step 300... d_loss: 1.2875... g_loss: 0.6176 Elapsed: 2m2s
Sample output
Epoch 1/2... Step 310... d_loss: 1.1446... g_loss: 0.7605 Elapsed: 2m2s
Epoch 1/2... Step 320... d_loss: 1.1256... g_loss: 0.7969 Elapsed: 2m2s
Epoch 1/2... Step 330... d_loss: 1.1581... g_loss: 0.8248 Elapsed: 2m2s
Epoch 1/2... Step 340... d_loss: 1.1497... g_loss: 0.6879 Elapsed: 2m2s
Epoch 1/2... Step 350... d_loss: 0.9836... g_loss: 1.1411 Elapsed: 2m2s
Epoch 1/2... Step 360... d_loss: 1.0903... g_loss: 0.8936 Elapsed: 2m2s
Epoch 1/2... Step 370... d_loss: 1.1719... g_loss: 1.1396 Elapsed: 2m2s
Epoch 1/2... Step 380... d_loss: 1.2016... g_loss: 0.6961 Elapsed: 2m2s
Epoch 1/2... Step 390... d_loss: 0.9228... g_loss: 1.1915 Elapsed: 2m2s
Epoch 1/2... Step 400... d_loss: 1.8613... g_loss: 0.2809 Elapsed: 2m2s
Sample output
Epoch 1/2... Step 410... d_loss: 1.6412... g_loss: 0.4145 Elapsed: 2m2s
Epoch 1/2... Step 420... d_loss: 0.9061... g_loss: 1.1059 Elapsed: 2m2s
Epoch 1/2... Step 430... d_loss: 1.4429... g_loss: 0.5251 Elapsed: 2m2s
Epoch 1/2... Step 440... d_loss: 1.3056... g_loss: 0.6349 Elapsed: 3m3s
Epoch 1/2... Step 450... d_loss: 1.3505... g_loss: 0.5814 Elapsed: 3m3s
Epoch 1/2... Step 460... d_loss: 1.2141... g_loss: 0.9617 Elapsed: 3m3s
Epoch 1/2... Step 470... d_loss: 1.3755... g_loss: 0.5273 Elapsed: 3m3s
Epoch 1/2... Step 480... d_loss: 1.4524... g_loss: 0.6678 Elapsed: 3m3s
Epoch 1/2... Step 490... d_loss: 1.5734... g_loss: 0.4208 Elapsed: 3m3s
Epoch 1/2... Step 500... d_loss: 1.3692... g_loss: 0.5397 Elapsed: 3m3s
Sample output
Epoch 1/2... Step 510... d_loss: 1.4543... g_loss: 0.4436 Elapsed: 3m3s
Epoch 1/2... Step 520... d_loss: 1.6749... g_loss: 0.3717 Elapsed: 3m3s
Epoch 1/2... Step 530... d_loss: 1.1914... g_loss: 0.6767 Elapsed: 3m3s
Epoch 1/2... Step 540... d_loss: 1.1839... g_loss: 0.6745 Elapsed: 3m3s
Epoch 1/2... Step 550... d_loss: 1.1294... g_loss: 1.0895 Elapsed: 3m3s
Epoch 1/2... Step 560... d_loss: 1.2681... g_loss: 1.1415 Elapsed: 3m3s
Epoch 1/2... Step 570... d_loss: 1.1717... g_loss: 0.9189 Elapsed: 3m3s
Epoch 1/2... Step 580... d_loss: 1.1990... g_loss: 0.6731 Elapsed: 3m3s
Epoch 1/2... Step 590... d_loss: 1.0448... g_loss: 1.1370 Elapsed: 4m4s
Epoch 1/2... Step 600... d_loss: 1.2588... g_loss: 0.6810 Elapsed: 4m4s
Sample output
Epoch 1/2... Step 610... d_loss: 1.3518... g_loss: 0.5805 Elapsed: 4m4s
Epoch 1/2... Step 620... d_loss: 1.5880... g_loss: 0.3950 Elapsed: 4m4s
Epoch 1/2... Step 630... d_loss: 1.1465... g_loss: 0.9482 Elapsed: 4m4s
Epoch 1/2... Step 640... d_loss: 1.2059... g_loss: 0.9584 Elapsed: 4m4s
Epoch 1/2... Step 650... d_loss: 0.9984... g_loss: 1.0725 Elapsed: 4m4s
Epoch 1/2... Step 660... d_loss: 1.1299... g_loss: 0.7384 Elapsed: 4m4s
Epoch 1/2... Step 670... d_loss: 1.2609... g_loss: 0.6818 Elapsed: 4m4s
Epoch 1/2... Step 680... d_loss: 1.0876... g_loss: 0.8186 Elapsed: 4m4s
Epoch 1/2... Step 690... d_loss: 1.2807... g_loss: 0.6288 Elapsed: 4m4s
Epoch 1/2... Step 700... d_loss: 1.0669... g_loss: 1.0573 Elapsed: 4m4s
Sample output
Epoch 1/2... Step 710... d_loss: 1.7291... g_loss: 0.3518 Elapsed: 4m4s
Epoch 1/2... Step 720... d_loss: 1.4662... g_loss: 0.5077 Elapsed: 4m4s
Epoch 1/2... Step 730... d_loss: 1.1271... g_loss: 0.7501 Elapsed: 4m4s
Epoch 1/2... Step 740... d_loss: 1.2400... g_loss: 0.6885 Elapsed: 5m5s
Epoch 1/2... Step 750... d_loss: 1.0205... g_loss: 1.3226 Elapsed: 5m5s
Epoch 1/2... Step 760... d_loss: 0.7211... g_loss: 1.6174 Elapsed: 5m5s
Epoch 1/2... Step 770... d_loss: 1.0947... g_loss: 0.9428 Elapsed: 5m5s
Epoch 1/2... Step 780... d_loss: 1.3529... g_loss: 0.5591 Elapsed: 5m5s
Epoch 1/2... Step 790... d_loss: 1.4879... g_loss: 0.4520 Elapsed: 5m5s
Epoch 1/2... Step 800... d_loss: 1.2642... g_loss: 0.5837 Elapsed: 5m5s
Sample output
Epoch 1/2... Step 810... d_loss: 0.9489... g_loss: 0.9974 Elapsed: 5m5s
Epoch 1/2... Step 820... d_loss: 1.1790... g_loss: 0.6796 Elapsed: 5m5s
Epoch 1/2... Step 830... d_loss: 0.9585... g_loss: 1.0704 Elapsed: 5m5s
Epoch 1/2... Step 840... d_loss: 0.7563... g_loss: 1.6779 Elapsed: 5m5s
Epoch 1/2... Step 850... d_loss: 1.4370... g_loss: 0.4812 Elapsed: 5m5s
Epoch 1/2... Step 860... d_loss: 1.3725... g_loss: 0.5348 Elapsed: 5m5s
Epoch 1/2... Step 870... d_loss: 1.1069... g_loss: 0.7238 Elapsed: 5m5s
Epoch 1/2... Step 880... d_loss: 1.2585... g_loss: 0.5861 Elapsed: 5m5s
Epoch 1/2... Step 890... d_loss: 0.8480... g_loss: 1.3564 Elapsed: 6m6s
Epoch 1/2... Step 900... d_loss: 0.7369... g_loss: 1.5370 Elapsed: 6m6s
Sample output
Epoch 1/2... Step 910... d_loss: 1.0529... g_loss: 1.6161 Elapsed: 6m6s
Epoch 1/2... Step 920... d_loss: 0.8263... g_loss: 1.3473 Elapsed: 6m6s
Epoch 1/2... Step 930... d_loss: 0.9965... g_loss: 0.8551 Elapsed: 6m6s
Epoch 1/2... Step 940... d_loss: 1.0579... g_loss: 0.7846 Elapsed: 6m6s
Epoch 1/2... Step 950... d_loss: 0.8458... g_loss: 1.2421 Elapsed: 6m6s
Epoch 1/2... Step 960... d_loss: 0.8227... g_loss: 1.1311 Elapsed: 6m6s
Epoch 1/2... Step 970... d_loss: 0.9025... g_loss: 1.0729 Elapsed: 6m6s
Epoch 1/2... Step 980... d_loss: 0.7428... g_loss: 1.6029 Elapsed: 6m6s
Epoch 1/2... Step 990... d_loss: 1.0327... g_loss: 0.8226 Elapsed: 6m6s
Epoch 1/2... Step 1000... d_loss: 1.0776... g_loss: 0.7898 Elapsed: 6m6s
Sample output
Epoch 1/2... Step 1010... d_loss: 1.2866... g_loss: 0.5864 Elapsed: 6m6s
Epoch 1/2... Step 1020... d_loss: 1.0855... g_loss: 0.7860 Elapsed: 6m6s
Epoch 1/2... Step 1030... d_loss: 1.6542... g_loss: 0.4216 Elapsed: 7m7s
Epoch 1/2... Step 1040... d_loss: 1.1264... g_loss: 0.8058 Elapsed: 7m7s
Epoch 1/2... Step 1050... d_loss: 0.8855... g_loss: 1.1260 Elapsed: 7m7s
Epoch 1/2... Step 1060... d_loss: 1.1674... g_loss: 0.6631 Elapsed: 7m7s
Epoch 1/2... Step 1070... d_loss: 0.8293... g_loss: 1.2092 Elapsed: 7m7s
Epoch 1/2... Step 1080... d_loss: 0.8247... g_loss: 1.2331 Elapsed: 7m7s
Epoch 1/2... Step 1090... d_loss: 1.3371... g_loss: 0.5490 Elapsed: 7m7s
Epoch 1/2... Step 1100... d_loss: 1.2684... g_loss: 0.5765 Elapsed: 7m7s
Sample output
Epoch 1/2... Step 1110... d_loss: 1.6033... g_loss: 0.4324 Elapsed: 7m7s
Epoch 1/2... Step 1120... d_loss: 0.8145... g_loss: 1.3469 Elapsed: 7m7s
Epoch 1/2... Step 1130... d_loss: 1.2272... g_loss: 0.6062 Elapsed: 7m7s
Epoch 1/2... Step 1140... d_loss: 0.8196... g_loss: 1.2063 Elapsed: 7m7s
Epoch 1/2... Step 1150... d_loss: 1.1648... g_loss: 0.6963 Elapsed: 7m7s
Epoch 1/2... Step 1160... d_loss: 0.8917... g_loss: 1.1899 Elapsed: 7m7s
Epoch 1/2... Step 1170... d_loss: 1.2451... g_loss: 0.6137 Elapsed: 7m7s
Epoch 1/2... Step 1180... d_loss: 0.7837... g_loss: 1.3274 Elapsed: 7m7s
Epoch 1/2... Step 1190... d_loss: 0.8659... g_loss: 1.8120 Elapsed: 8m8s
Epoch 1/2... Step 1200... d_loss: 0.8644... g_loss: 1.0734 Elapsed: 8m8s
Sample output
Epoch 1/2... Step 1210... d_loss: 0.7776... g_loss: 1.1904 Elapsed: 8m8s
Epoch 1/2... Step 1220... d_loss: 0.9358... g_loss: 0.9762 Elapsed: 8m8s
Epoch 1/2... Step 1230... d_loss: 1.0172... g_loss: 0.8882 Elapsed: 8m8s
Epoch 1/2... Step 1240... d_loss: 1.5821... g_loss: 0.3946 Elapsed: 8m8s
Epoch 1/2... Step 1250... d_loss: 0.9680... g_loss: 1.3547 Elapsed: 8m8s
Epoch 1/2... Step 1260... d_loss: 0.8522... g_loss: 1.6356 Elapsed: 8m8s
Epoch 1/2... Step 1270... d_loss: 0.8904... g_loss: 1.0947 Elapsed: 8m8s
Epoch 1/2... Step 1280... d_loss: 0.9344... g_loss: 0.9724 Elapsed: 8m8s
Epoch 1/2... Step 1290... d_loss: 0.9183... g_loss: 0.9992 Elapsed: 8m8s
Epoch 1/2... Step 1300... d_loss: 1.1588... g_loss: 0.7618 Elapsed: 8m8s
Sample output
Epoch 1/2... Step 1310... d_loss: 0.6534... g_loss: 1.7539 Elapsed: 8m8s
Epoch 1/2... Step 1320... d_loss: 1.2973... g_loss: 0.5919 Elapsed: 8m8s
Epoch 1/2... Step 1330... d_loss: 1.0587... g_loss: 0.8109 Elapsed: 9m9s
Epoch 1/2... Step 1340... d_loss: 0.8136... g_loss: 2.0132 Elapsed: 9m9s
Epoch 1/2... Step 1350... d_loss: 1.2022... g_loss: 0.6898 Elapsed: 9m9s
Epoch 1/2... Step 1360... d_loss: 2.5260... g_loss: 0.1683 Elapsed: 9m9s
Epoch 1/2... Step 1370... d_loss: 1.5021... g_loss: 0.4578 Elapsed: 9m9s
Epoch 1/2... Step 1380... d_loss: 1.2430... g_loss: 0.6404 Elapsed: 9m9s
Epoch 1/2... Step 1390... d_loss: 0.8577... g_loss: 1.2993 Elapsed: 9m9s
Epoch 1/2... Step 1400... d_loss: 0.7907... g_loss: 1.3185 Elapsed: 9m9s
Sample output
Epoch 1/2... Step 1410... d_loss: 0.7936... g_loss: 1.2099 Elapsed: 9m9s
Epoch 1/2... Step 1420... d_loss: 1.1837... g_loss: 0.7307 Elapsed: 9m9s
Epoch 1/2... Step 1430... d_loss: 1.0517... g_loss: 0.8959 Elapsed: 9m9s
Epoch 1/2... Step 1440... d_loss: 1.2136... g_loss: 0.6693 Elapsed: 9m9s
Epoch 1/2... Step 1450... d_loss: 1.1020... g_loss: 0.7517 Elapsed: 9m9s
Epoch 1/2... Step 1460... d_loss: 0.7682... g_loss: 1.2837 Elapsed: 9m9s
Epoch 1/2... Step 1470... d_loss: 1.0230... g_loss: 0.8701 Elapsed: 9m9s
Epoch 1/2... Step 1480... d_loss: 0.9063... g_loss: 1.0133 Elapsed: 10m10s
Epoch 1/2... Step 1490... d_loss: 1.1300... g_loss: 0.9461 Elapsed: 10m10s
Epoch 1/2... Step 1500... d_loss: 0.8647... g_loss: 1.0427 Elapsed: 10m10s
Sample output
Epoch 1/2... Step 1510... d_loss: 1.4194... g_loss: 0.4737 Elapsed: 10m10s
Epoch 1/2... Step 1520... d_loss: 0.9698... g_loss: 0.8850 Elapsed: 10m10s
Epoch 1/2... Step 1530... d_loss: 1.2499... g_loss: 0.6345 Elapsed: 10m10s
Epoch 1/2... Step 1540... d_loss: 0.7217... g_loss: 1.7805 Elapsed: 10m10s
Epoch 1/2... Step 1550... d_loss: 0.7821... g_loss: 1.2523 Elapsed: 10m10s
Epoch 1/2... Step 1560... d_loss: 0.9442... g_loss: 0.9401 Elapsed: 10m10s
Epoch 1/2... Step 1570... d_loss: 0.8752... g_loss: 1.7130 Elapsed: 10m10s
Epoch 1/2... Step 1580... d_loss: 1.0852... g_loss: 0.8115 Elapsed: 10m10s
Epoch 1/2... Step 1590... d_loss: 0.8034... g_loss: 1.8121 Elapsed: 10m10s
Epoch 1/2... Step 1600... d_loss: 1.1519... g_loss: 0.7332 Elapsed: 10m10s
Sample output
Epoch 1/2... Step 1610... d_loss: 0.9025... g_loss: 1.2734 Elapsed: 10m10s
Epoch 1/2... Step 1620... d_loss: 1.0413... g_loss: 0.8882 Elapsed: 10m10s
Epoch 1/2... Step 1630... d_loss: 0.8717... g_loss: 1.0464 Elapsed: 11m11s
Epoch 1/2... Step 1640... d_loss: 0.9126... g_loss: 0.9927 Elapsed: 11m11s
Epoch 1/2... Step 1650... d_loss: 0.7422... g_loss: 1.4999 Elapsed: 11m11s
Epoch 1/2... Step 1660... d_loss: 0.9773... g_loss: 0.8693 Elapsed: 11m11s
Epoch 1/2... Step 1670... d_loss: 1.3049... g_loss: 0.5783 Elapsed: 11m11s
Epoch 1/2... Step 1680... d_loss: 0.6690... g_loss: 1.5966 Elapsed: 11m11s
Epoch 1/2... Step 1690... d_loss: 0.8874... g_loss: 1.0481 Elapsed: 11m11s
Epoch 1/2... Step 1700... d_loss: 1.0666... g_loss: 0.8617 Elapsed: 11m11s
Sample output
Epoch 1/2... Step 1710... d_loss: 0.8379... g_loss: 1.2766 Elapsed: 11m11s
Epoch 1/2... Step 1720... d_loss: 0.9102... g_loss: 2.7626 Elapsed: 11m11s
Epoch 1/2... Step 1730... d_loss: 1.7150... g_loss: 0.3911 Elapsed: 11m11s
Epoch 1/2... Step 1740... d_loss: 0.8649... g_loss: 1.3756 Elapsed: 11m11s
Epoch 1/2... Step 1750... d_loss: 0.6669... g_loss: 1.7189 Elapsed: 11m11s
Epoch 1/2... Step 1760... d_loss: 0.9181... g_loss: 0.9321 Elapsed: 11m11s
Epoch 1/2... Step 1770... d_loss: 0.8438... g_loss: 1.2285 Elapsed: 11m11s
Epoch 1/2... Step 1780... d_loss: 0.6684... g_loss: 1.5550 Elapsed: 12m12s
Epoch 1/2... Step 1790... d_loss: 0.6907... g_loss: 1.4603 Elapsed: 12m12s
Epoch 1/2... Step 1800... d_loss: 0.6637... g_loss: 1.6176 Elapsed: 12m12s
Sample output
Epoch 1/2... Step 1810... d_loss: 0.9149... g_loss: 0.9665 Elapsed: 12m12s
Epoch 1/2... Step 1820... d_loss: 0.7736... g_loss: 1.2261 Elapsed: 12m12s
Epoch 1/2... Step 1830... d_loss: 1.2654... g_loss: 0.5936 Elapsed: 12m12s
Epoch 1/2... Step 1840... d_loss: 0.8698... g_loss: 1.0554 Elapsed: 12m12s
Epoch 1/2... Step 1850... d_loss: 0.9970... g_loss: 0.8196 Elapsed: 12m12s
Epoch 1/2... Step 1860... d_loss: 1.2046... g_loss: 0.6480 Elapsed: 12m12s
Epoch 1/2... Step 1870... d_loss: 0.6159... g_loss: 1.7574 Elapsed: 12m12s
Epoch 2/2... Step 1880... d_loss: 0.8418... g_loss: 1.2470 Elapsed: 12m12s
Epoch 2/2... Step 1890... d_loss: 0.6688... g_loss: 2.0816 Elapsed: 12m12s
Epoch 2/2... Step 1900... d_loss: 0.9051... g_loss: 2.0628 Elapsed: 12m12s
Sample output
Epoch 2/2... Step 1910... d_loss: 0.7659... g_loss: 1.3493 Elapsed: 12m12s
Epoch 2/2... Step 1920... d_loss: 0.8018... g_loss: 1.2931 Elapsed: 12m12s
Epoch 2/2... Step 1930... d_loss: 1.0150... g_loss: 0.8701 Elapsed: 13m13s
Epoch 2/2... Step 1940... d_loss: 1.0214... g_loss: 0.8119 Elapsed: 13m13s
Epoch 2/2... Step 1950... d_loss: 0.6112... g_loss: 2.6726 Elapsed: 13m13s
Epoch 2/2... Step 1960... d_loss: 0.7472... g_loss: 1.4551 Elapsed: 13m13s
Epoch 2/2... Step 1970... d_loss: 1.2477... g_loss: 0.6771 Elapsed: 13m13s
Epoch 2/2... Step 1980... d_loss: 1.0411... g_loss: 0.8548 Elapsed: 13m13s
Epoch 2/2... Step 1990... d_loss: 0.8023... g_loss: 1.1655 Elapsed: 13m13s
Epoch 2/2... Step 2000... d_loss: 0.9485... g_loss: 0.9894 Elapsed: 13m13s
Sample output
Epoch 2/2... Step 2010... d_loss: 0.7372... g_loss: 1.4039 Elapsed: 13m13s
Epoch 2/2... Step 2020... d_loss: 0.9000... g_loss: 1.0538 Elapsed: 13m13s
Epoch 2/2... Step 2030... d_loss: 0.9860... g_loss: 0.8543 Elapsed: 13m13s
Epoch 2/2... Step 2040... d_loss: 0.9325... g_loss: 1.0045 Elapsed: 13m13s
Epoch 2/2... Step 2050... d_loss: 0.7479... g_loss: 1.4641 Elapsed: 13m13s
Epoch 2/2... Step 2060... d_loss: 0.6326... g_loss: 1.6694 Elapsed: 13m13s
Epoch 2/2... Step 2070... d_loss: 1.0688... g_loss: 0.7869 Elapsed: 13m13s
Epoch 2/2... Step 2080... d_loss: 1.3405... g_loss: 0.5707 Elapsed: 14m14s
Epoch 2/2... Step 2090... d_loss: 0.9228... g_loss: 1.1022 Elapsed: 14m14s
Epoch 2/2... Step 2100... d_loss: 0.6187... g_loss: 1.5641 Elapsed: 14m14s
Sample output
Epoch 2/2... Step 2110... d_loss: 0.9759... g_loss: 0.8886 Elapsed: 14m14s
Epoch 2/2... Step 2120... d_loss: 0.6786... g_loss: 1.4785 Elapsed: 14m14s
Epoch 2/2... Step 2130... d_loss: 0.8622... g_loss: 1.1250 Elapsed: 14m14s
Epoch 2/2... Step 2140... d_loss: 0.7567... g_loss: 1.5474 Elapsed: 14m14s
Epoch 2/2... Step 2150... d_loss: 1.4717... g_loss: 0.5214 Elapsed: 14m14s
Epoch 2/2... Step 2160... d_loss: 0.8011... g_loss: 1.1275 Elapsed: 14m14s
Epoch 2/2... Step 2170... d_loss: 0.6313... g_loss: 1.8721 Elapsed: 14m14s
Epoch 2/2... Step 2180... d_loss: 0.8062... g_loss: 1.1840 Elapsed: 14m14s
Epoch 2/2... Step 2190... d_loss: 0.6009... g_loss: 1.6864 Elapsed: 14m14s
Epoch 2/2... Step 2200... d_loss: 0.9705... g_loss: 0.8876 Elapsed: 14m14s
Sample output
Epoch 2/2... Step 2210... d_loss: 0.6875... g_loss: 1.5499 Elapsed: 14m14s
Epoch 2/2... Step 2220... d_loss: 0.7296... g_loss: 1.3116 Elapsed: 14m14s
Epoch 2/2... Step 2230... d_loss: 0.6988... g_loss: 2.0639 Elapsed: 15m15s
Epoch 2/2... Step 2240... d_loss: 0.6882... g_loss: 1.4094 Elapsed: 15m15s
Epoch 2/2... Step 2250... d_loss: 0.8320... g_loss: 1.2420 Elapsed: 15m15s
Epoch 2/2... Step 2260... d_loss: 0.6274... g_loss: 1.8304 Elapsed: 15m15s
Epoch 2/2... Step 2270... d_loss: 0.7243... g_loss: 1.5427 Elapsed: 15m15s
Epoch 2/2... Step 2280... d_loss: 0.6338... g_loss: 1.5181 Elapsed: 15m15s
Epoch 2/2... Step 2290... d_loss: 0.6300... g_loss: 1.9243 Elapsed: 15m15s
Epoch 2/2... Step 2300... d_loss: 0.7641... g_loss: 1.3675 Elapsed: 15m15s
Sample output
Epoch 2/2... Step 2310... d_loss: 0.7325... g_loss: 1.5015 Elapsed: 15m15s
Epoch 2/2... Step 2320... d_loss: 0.6553... g_loss: 1.5757 Elapsed: 15m15s
Epoch 2/2... Step 2330... d_loss: 1.2376... g_loss: 0.6190 Elapsed: 15m15s
Epoch 2/2... Step 2340... d_loss: 1.2437... g_loss: 0.7368 Elapsed: 15m15s
Epoch 2/2... Step 2350... d_loss: 0.6414... g_loss: 1.7159 Elapsed: 15m15s
Epoch 2/2... Step 2360... d_loss: 0.9775... g_loss: 0.9133 Elapsed: 15m15s
Epoch 2/2... Step 2370... d_loss: 0.8805... g_loss: 1.1071 Elapsed: 15m15s
Epoch 2/2... Step 2380... d_loss: 1.1553... g_loss: 0.7310 Elapsed: 16m16s
Epoch 2/2... Step 2390... d_loss: 0.6977... g_loss: 1.5262 Elapsed: 16m16s
Epoch 2/2... Step 2400... d_loss: 0.9374... g_loss: 0.9966 Elapsed: 16m16s
Sample output
Epoch 2/2... Step 2410... d_loss: 0.8566... g_loss: 1.0840 Elapsed: 16m16s
Epoch 2/2... Step 2420... d_loss: 0.6497... g_loss: 1.7386 Elapsed: 16m16s
Epoch 2/2... Step 2430... d_loss: 0.8469... g_loss: 1.1132 Elapsed: 16m16s
Epoch 2/2... Step 2440... d_loss: 0.6185... g_loss: 1.9002 Elapsed: 16m16s
Epoch 2/2... Step 2450... d_loss: 0.8243... g_loss: 2.0918 Elapsed: 16m16s
Epoch 2/2... Step 2460... d_loss: 1.0192... g_loss: 0.8799 Elapsed: 16m16s
Epoch 2/2... Step 2470... d_loss: 2.0281... g_loss: 0.3020 Elapsed: 16m16s
Epoch 2/2... Step 2480... d_loss: 0.8505... g_loss: 1.2344 Elapsed: 16m16s
Epoch 2/2... Step 2490... d_loss: 0.7409... g_loss: 1.2718 Elapsed: 16m16s
Epoch 2/2... Step 2500... d_loss: 0.8115... g_loss: 1.2695 Elapsed: 16m16s
Sample output
Epoch 2/2... Step 2510... d_loss: 1.4272... g_loss: 0.4853 Elapsed: 16m16s
Epoch 2/2... Step 2520... d_loss: 1.0467... g_loss: 1.4258 Elapsed: 16m16s
Epoch 2/2... Step 2530... d_loss: 0.8375... g_loss: 1.1877 Elapsed: 17m17s
Epoch 2/2... Step 2540... d_loss: 0.8736... g_loss: 1.2188 Elapsed: 17m17s
Epoch 2/2... Step 2550... d_loss: 0.8734... g_loss: 1.1900 Elapsed: 17m17s
Epoch 2/2... Step 2560... d_loss: 0.6711... g_loss: 1.4463 Elapsed: 17m17s
Epoch 2/2... Step 2570... d_loss: 0.9418... g_loss: 0.9558 Elapsed: 17m17s
Epoch 2/2... Step 2580... d_loss: 0.7598... g_loss: 1.3729 Elapsed: 17m17s
Epoch 2/2... Step 2590... d_loss: 0.7688... g_loss: 1.3509 Elapsed: 17m17s
Epoch 2/2... Step 2600... d_loss: 0.7129... g_loss: 2.2612 Elapsed: 17m17s
Sample output
Epoch 2/2... Step 2610... d_loss: 1.1364... g_loss: 0.7240 Elapsed: 17m17s
Epoch 2/2... Step 2620... d_loss: 0.6811... g_loss: 1.7403 Elapsed: 17m17s
Epoch 2/2... Step 2630... d_loss: 0.7263... g_loss: 1.3898 Elapsed: 17m17s
Epoch 2/2... Step 2640... d_loss: 1.0361... g_loss: 0.8443 Elapsed: 17m17s
Epoch 2/2... Step 2650... d_loss: 0.8568... g_loss: 1.0620 Elapsed: 17m17s
Epoch 2/2... Step 2660... d_loss: 0.6972... g_loss: 1.8167 Elapsed: 17m17s
Epoch 2/2... Step 2670... d_loss: 0.6558... g_loss: 1.7642 Elapsed: 17m17s
Epoch 2/2... Step 2680... d_loss: 0.8597... g_loss: 2.2583 Elapsed: 18m18s
Epoch 2/2... Step 2690... d_loss: 0.5503... g_loss: 1.9364 Elapsed: 18m18s
Epoch 2/2... Step 2700... d_loss: 0.9028... g_loss: 1.0570 Elapsed: 18m18s
Sample output
Epoch 2/2... Step 2710... d_loss: 0.6834... g_loss: 1.5214 Elapsed: 18m18s
Epoch 2/2... Step 2720... d_loss: 0.7746... g_loss: 1.2686 Elapsed: 18m18s
Epoch 2/2... Step 2730... d_loss: 0.8874... g_loss: 1.0909 Elapsed: 18m18s
Epoch 2/2... Step 2740... d_loss: 0.6937... g_loss: 1.5170 Elapsed: 18m18s
Epoch 2/2... Step 2750... d_loss: 2.9763... g_loss: 0.1728 Elapsed: 18m18s
Epoch 2/2... Step 2760... d_loss: 0.8024... g_loss: 1.3990 Elapsed: 18m18s
Epoch 2/2... Step 2770... d_loss: 0.8650... g_loss: 1.2560 Elapsed: 18m18s
Epoch 2/2... Step 2780... d_loss: 0.5959... g_loss: 1.8909 Elapsed: 18m18s
Epoch 2/2... Step 2790... d_loss: 0.8039... g_loss: 1.2093 Elapsed: 18m18s
Epoch 2/2... Step 2800... d_loss: 0.7452... g_loss: 1.3500 Elapsed: 18m18s
Sample output
Epoch 2/2... Step 2810... d_loss: 0.7562... g_loss: 1.8621 Elapsed: 18m18s
Epoch 2/2... Step 2820... d_loss: 0.7262... g_loss: 1.6877 Elapsed: 18m18s
Epoch 2/2... Step 2830... d_loss: 0.8616... g_loss: 1.0677 Elapsed: 19m19s
Epoch 2/2... Step 2840... d_loss: 0.7504... g_loss: 2.0938 Elapsed: 19m19s
Epoch 2/2... Step 2850... d_loss: 0.8292... g_loss: 1.1330 Elapsed: 19m19s
Epoch 2/2... Step 2860... d_loss: 1.0669... g_loss: 0.7832 Elapsed: 19m19s
Epoch 2/2... Step 2870... d_loss: 0.7608... g_loss: 1.4862 Elapsed: 19m19s
Epoch 2/2... Step 2880... d_loss: 0.6501... g_loss: 1.5355 Elapsed: 19m19s
Epoch 2/2... Step 2890... d_loss: 0.7019... g_loss: 1.4396 Elapsed: 19m19s
Epoch 2/2... Step 2900... d_loss: 0.6994... g_loss: 1.5411 Elapsed: 19m19s
Sample output
Epoch 2/2... Step 2910... d_loss: 0.6138... g_loss: 1.7309 Elapsed: 19m19s
Epoch 2/2... Step 2920... d_loss: 0.8704... g_loss: 1.1823 Elapsed: 19m19s
Epoch 2/2... Step 2930... d_loss: 0.5572... g_loss: 1.9618 Elapsed: 19m19s
Epoch 2/2... Step 2940... d_loss: 1.4048... g_loss: 3.5239 Elapsed: 19m19s
Epoch 2/2... Step 2950... d_loss: 0.7400... g_loss: 1.3246 Elapsed: 19m19s
Epoch 2/2... Step 2960... d_loss: 0.6877... g_loss: 1.5152 Elapsed: 19m19s
Epoch 2/2... Step 2970... d_loss: 0.6929... g_loss: 1.3721 Elapsed: 19m19s
Epoch 2/2... Step 2980... d_loss: 0.8664... g_loss: 1.0599 Elapsed: 20m20s
Epoch 2/2... Step 2990... d_loss: 0.7836... g_loss: 1.3285 Elapsed: 20m20s
Epoch 2/2... Step 3000... d_loss: 0.5986... g_loss: 1.7912 Elapsed: 20m20s
Sample output
Epoch 2/2... Step 3010... d_loss: 1.0417... g_loss: 0.8416 Elapsed: 20m20s
Epoch 2/2... Step 3020... d_loss: 0.7872... g_loss: 1.3156 Elapsed: 20m20s
Epoch 2/2... Step 3030... d_loss: 0.7667... g_loss: 1.2352 Elapsed: 20m20s
Epoch 2/2... Step 3040... d_loss: 1.0775... g_loss: 0.8253 Elapsed: 20m20s
Epoch 2/2... Step 3050... d_loss: 0.8023... g_loss: 1.1936 Elapsed: 20m20s
Epoch 2/2... Step 3060... d_loss: 0.6004... g_loss: 1.7237 Elapsed: 20m20s
Epoch 2/2... Step 3070... d_loss: 0.6436... g_loss: 1.6202 Elapsed: 20m20s
Epoch 2/2... Step 3080... d_loss: 0.6434... g_loss: 1.7828 Elapsed: 20m20s
Epoch 2/2... Step 3090... d_loss: 0.8110... g_loss: 1.3837 Elapsed: 20m20s
Epoch 2/2... Step 3100... d_loss: 0.9386... g_loss: 0.9929 Elapsed: 20m20s
Sample output
Epoch 2/2... Step 3110... d_loss: 0.6143... g_loss: 2.0441 Elapsed: 20m20s
Epoch 2/2... Step 3120... d_loss: 0.8477... g_loss: 1.1491 Elapsed: 20m20s
Epoch 2/2... Step 3130... d_loss: 0.5841... g_loss: 1.9570 Elapsed: 21m21s
Epoch 2/2... Step 3140... d_loss: 0.7354... g_loss: 1.6311 Elapsed: 21m21s
Epoch 2/2... Step 3150... d_loss: 0.7024... g_loss: 1.4841 Elapsed: 21m21s
Epoch 2/2... Step 3160... d_loss: 0.7417... g_loss: 1.4437 Elapsed: 21m21s
Epoch 2/2... Step 3170... d_loss: 0.8026... g_loss: 1.2870 Elapsed: 21m21s
Epoch 2/2... Step 3180... d_loss: 0.7304... g_loss: 1.3924 Elapsed: 21m21s
Epoch 2/2... Step 3190... d_loss: 1.0560... g_loss: 0.8397 Elapsed: 21m21s
Epoch 2/2... Step 3200... d_loss: 0.7283... g_loss: 1.6939 Elapsed: 21m21s
Sample output
Epoch 2/2... Step 3210... d_loss: 0.6251... g_loss: 1.7964 Elapsed: 21m21s
Epoch 2/2... Step 3220... d_loss: 0.7748... g_loss: 1.2855 Elapsed: 21m21s
Epoch 2/2... Step 3230... d_loss: 1.2982... g_loss: 0.6195 Elapsed: 21m21s
Epoch 2/2... Step 3240... d_loss: 0.7363... g_loss: 1.3074 Elapsed: 21m21s
Epoch 2/2... Step 3250... d_loss: 0.8482... g_loss: 1.1954 Elapsed: 21m21s
Epoch 2/2... Step 3260... d_loss: 0.7484... g_loss: 1.2556 Elapsed: 21m21s
Epoch 2/2... Step 3270... d_loss: 0.9967... g_loss: 0.9169 Elapsed: 21m21s
Epoch 2/2... Step 3280... d_loss: 0.7843... g_loss: 1.2862 Elapsed: 22m22s
Epoch 2/2... Step 3290... d_loss: 0.7501... g_loss: 1.2662 Elapsed: 22m22s
Epoch 2/2... Step 3300... d_loss: 0.6994... g_loss: 1.5498 Elapsed: 22m22s
Sample output
Epoch 2/2... Step 3310... d_loss: 0.6907... g_loss: 1.4912 Elapsed: 22m22s
Epoch 2/2... Step 3320... d_loss: 0.6072... g_loss: 1.8063 Elapsed: 22m22s
Epoch 2/2... Step 3330... d_loss: 0.6425... g_loss: 1.5946 Elapsed: 22m22s
Epoch 2/2... Step 3340... d_loss: 0.8542... g_loss: 1.1407 Elapsed: 22m22s
Epoch 2/2... Step 3350... d_loss: 0.7283... g_loss: 1.4135 Elapsed: 22m22s
Epoch 2/2... Step 3360... d_loss: 0.6864... g_loss: 1.5491 Elapsed: 22m22s
Epoch 2/2... Step 3370... d_loss: 1.2335... g_loss: 0.7021 Elapsed: 22m22s
Epoch 2/2... Step 3380... d_loss: 0.5668... g_loss: 1.9399 Elapsed: 22m22s
Epoch 2/2... Step 3390... d_loss: 0.4815... g_loss: 2.8217 Elapsed: 22m22s
Epoch 2/2... Step 3400... d_loss: 1.0934... g_loss: 0.7472 Elapsed: 22m22s
Sample output
Epoch 2/2... Step 3410... d_loss: 0.8189... g_loss: 1.5389 Elapsed: 22m22s
Epoch 2/2... Step 3420... d_loss: 0.8346... g_loss: 1.2487 Elapsed: 22m22s
Epoch 2/2... Step 3430... d_loss: 0.8262... g_loss: 1.2164 Elapsed: 23m23s
Epoch 2/2... Step 3440... d_loss: 0.7876... g_loss: 1.2237 Elapsed: 23m23s
Epoch 2/2... Step 3450... d_loss: 1.3338... g_loss: 0.6527 Elapsed: 23m23s
Epoch 2/2... Step 3460... d_loss: 1.0504... g_loss: 0.8301 Elapsed: 23m23s
Epoch 2/2... Step 3470... d_loss: 0.8210... g_loss: 1.1456 Elapsed: 23m23s
Epoch 2/2... Step 3480... d_loss: 1.7656... g_loss: 0.4011 Elapsed: 23m23s
Epoch 2/2... Step 3490... d_loss: 0.9719... g_loss: 0.9662 Elapsed: 23m23s
Epoch 2/2... Step 3500... d_loss: 0.5466... g_loss: 2.0978 Elapsed: 23m23s
Sample output
Epoch 2/2... Step 3510... d_loss: 0.7166... g_loss: 1.4388 Elapsed: 23m23s
Epoch 2/2... Step 3520... d_loss: 0.6161... g_loss: 1.7283 Elapsed: 23m23s
Epoch 2/2... Step 3530... d_loss: 0.7145... g_loss: 1.3826 Elapsed: 23m23s
Epoch 2/2... Step 3540... d_loss: 0.7397... g_loss: 1.3296 Elapsed: 23m23s
Epoch 2/2... Step 3550... d_loss: 0.6213... g_loss: 1.7806 Elapsed: 23m23s
Epoch 2/2... Step 3560... d_loss: 0.6157... g_loss: 1.8309 Elapsed: 23m23s
Epoch 2/2... Step 3570... d_loss: 0.7820... g_loss: 1.4005 Elapsed: 23m23s
Epoch 2/2... Step 3580... d_loss: 0.8691... g_loss: 1.1551 Elapsed: 23m23s
Epoch 2/2... Step 3590... d_loss: 2.0032... g_loss: 0.2772 Elapsed: 24m24s
Epoch 2/2... Step 3600... d_loss: 0.5359... g_loss: 2.5760 Elapsed: 24m24s
Sample output
Epoch 2/2... Step 3610... d_loss: 0.5769... g_loss: 1.9835 Elapsed: 24m24s
Epoch 2/2... Step 3620... d_loss: 0.6864... g_loss: 1.4375 Elapsed: 24m24s
Epoch 2/2... Step 3630... d_loss: 0.6549... g_loss: 1.5424 Elapsed: 24m24s
Epoch 2/2... Step 3640... d_loss: 0.9411... g_loss: 0.9846 Elapsed: 24m24s
Epoch 2/2... Step 3650... d_loss: 0.5834... g_loss: 1.7920 Elapsed: 24m24s
Epoch 2/2... Step 3660... d_loss: 0.9123... g_loss: 1.0056 Elapsed: 24m24s
Epoch 2/2... Step 3670... d_loss: 1.1374... g_loss: 0.7311 Elapsed: 24m24s
Epoch 2/2... Step 3680... d_loss: 1.2455... g_loss: 0.6271 Elapsed: 24m24s
Epoch 2/2... Step 3690... d_loss: 1.0978... g_loss: 0.8072 Elapsed: 24m24s
Epoch 2/2... Step 3700... d_loss: 0.5301... g_loss: 2.1042 Elapsed: 24m24s
Sample output
Epoch 2/2... Step 3710... d_loss: 0.5921... g_loss: 1.8737 Elapsed: 24m24s
Epoch 2/2... Step 3720... d_loss: 0.6252... g_loss: 1.8340 Elapsed: 24m24s
Epoch 2/2... Step 3730... d_loss: 0.7183... g_loss: 1.4050 Elapsed: 24m24s
Epoch 2/2... Step 3740... d_loss: 1.0091... g_loss: 0.8650 Elapsed: 25m25s
Epoch 2/2... Step 3750... d_loss: 0.5833... g_loss: 1.7045 Elapsed: 25m25s
Training done

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [13]:
batch_size = 32
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Parameters:
epoch_count: 1
batch_size: 32
z_dim: 100
learning_rate: 0.0002
beta1: 0.5
data_shape: (202599, 28, 28, 3)
Getting model inputs... Ok
Calculating model loss... Ok
Getting model optimizers ... Ok
Starting training
Epoch 1/1... Step 10... d_loss: 5.1100... g_loss: 0.0165 Elapsed: 0m0s
Epoch 1/1... Step 20... d_loss: 3.9264... g_loss: 0.0583 Elapsed: 0m0s
Epoch 1/1... Step 30... d_loss: 2.9925... g_loss: 0.1418 Elapsed: 0m0s
Epoch 1/1... Step 40... d_loss: 1.9296... g_loss: 0.4182 Elapsed: 0m0s
Epoch 1/1... Step 50... d_loss: 1.7785... g_loss: 0.5034 Elapsed: 0m0s
Epoch 1/1... Step 60... d_loss: 1.8066... g_loss: 0.5777 Elapsed: 0m0s
Epoch 1/1... Step 70... d_loss: 1.8786... g_loss: 0.6158 Elapsed: 0m0s
Epoch 1/1... Step 80... d_loss: 2.0742... g_loss: 0.3199 Elapsed: 0m0s
Epoch 1/1... Step 90... d_loss: 1.7797... g_loss: 0.5440 Elapsed: 0m0s
Epoch 1/1... Step 100... d_loss: 2.0527... g_loss: 0.3805 Elapsed: 0m0s
Sample output
Epoch 1/1... Step 110... d_loss: 1.7532... g_loss: 0.6050 Elapsed: 0m0s
Epoch 1/1... Step 120... d_loss: 1.5296... g_loss: 0.5856 Elapsed: 0m0s
Epoch 1/1... Step 130... d_loss: 1.4112... g_loss: 0.7537 Elapsed: 0m0s
Epoch 1/1... Step 140... d_loss: 1.8263... g_loss: 0.4514 Elapsed: 1m1s
Epoch 1/1... Step 150... d_loss: 1.4993... g_loss: 0.8178 Elapsed: 1m1s
Epoch 1/1... Step 160... d_loss: 1.5641... g_loss: 0.5936 Elapsed: 1m1s
Epoch 1/1... Step 170... d_loss: 1.4278... g_loss: 0.8027 Elapsed: 1m1s
Epoch 1/1... Step 180... d_loss: 1.5381... g_loss: 0.6115 Elapsed: 1m1s
Epoch 1/1... Step 190... d_loss: 1.3644... g_loss: 0.6442 Elapsed: 1m1s
Epoch 1/1... Step 200... d_loss: 1.6523... g_loss: 0.4316 Elapsed: 1m1s
Sample output
Epoch 1/1... Step 210... d_loss: 1.5497... g_loss: 0.6950 Elapsed: 1m1s
Epoch 1/1... Step 220... d_loss: 0.9996... g_loss: 1.0629 Elapsed: 1m1s
Epoch 1/1... Step 230... d_loss: 1.3917... g_loss: 0.6194 Elapsed: 1m1s
Epoch 1/1... Step 240... d_loss: 1.7580... g_loss: 0.3394 Elapsed: 1m1s
Epoch 1/1... Step 250... d_loss: 1.2469... g_loss: 0.7064 Elapsed: 1m1s
Epoch 1/1... Step 260... d_loss: 1.7702... g_loss: 0.3246 Elapsed: 1m1s
Epoch 1/1... Step 270... d_loss: 1.8002... g_loss: 0.3304 Elapsed: 1m1s
Epoch 1/1... Step 280... d_loss: 0.7145... g_loss: 1.9471 Elapsed: 2m2s
Epoch 1/1... Step 290... d_loss: 1.9175... g_loss: 0.2748 Elapsed: 2m2s
Epoch 1/1... Step 300... d_loss: 1.9973... g_loss: 0.2454 Elapsed: 2m2s
Sample output
Epoch 1/1... Step 310... d_loss: 1.3569... g_loss: 0.6665 Elapsed: 2m2s
Epoch 1/1... Step 320... d_loss: 0.8336... g_loss: 3.0157 Elapsed: 2m2s
Epoch 1/1... Step 330... d_loss: 1.2788... g_loss: 1.0909 Elapsed: 2m2s
Epoch 1/1... Step 340... d_loss: 1.2109... g_loss: 1.2810 Elapsed: 2m2s
Epoch 1/1... Step 350... d_loss: 1.0866... g_loss: 0.9364 Elapsed: 2m2s
Epoch 1/1... Step 360... d_loss: 0.9042... g_loss: 2.5189 Elapsed: 2m2s
Epoch 1/1... Step 370... d_loss: 1.4524... g_loss: 0.5962 Elapsed: 2m2s
Epoch 1/1... Step 380... d_loss: 1.6948... g_loss: 0.3681 Elapsed: 2m2s
Epoch 1/1... Step 390... d_loss: 2.2104... g_loss: 0.2111 Elapsed: 2m2s
Epoch 1/1... Step 400... d_loss: 1.6395... g_loss: 0.8646 Elapsed: 2m2s
Sample output
Epoch 1/1... Step 410... d_loss: 1.6455... g_loss: 0.4554 Elapsed: 2m2s
Epoch 1/1... Step 420... d_loss: 1.7321... g_loss: 0.4777 Elapsed: 2m2s
Epoch 1/1... Step 430... d_loss: 1.7051... g_loss: 0.4142 Elapsed: 3m3s
Epoch 1/1... Step 440... d_loss: 1.3387... g_loss: 0.8646 Elapsed: 3m3s
Epoch 1/1... Step 450... d_loss: 1.3026... g_loss: 0.9891 Elapsed: 3m3s
Epoch 1/1... Step 460... d_loss: 1.9368... g_loss: 0.4205 Elapsed: 3m3s
Epoch 1/1... Step 470... d_loss: 1.3631... g_loss: 0.7155 Elapsed: 3m3s
Epoch 1/1... Step 480... d_loss: 1.4942... g_loss: 0.6882 Elapsed: 3m3s
Epoch 1/1... Step 490... d_loss: 1.5608... g_loss: 0.6303 Elapsed: 3m3s
Epoch 1/1... Step 500... d_loss: 1.8082... g_loss: 0.6996 Elapsed: 3m3s
Sample output
Epoch 1/1... Step 510... d_loss: 1.6103... g_loss: 0.6286 Elapsed: 3m3s
Epoch 1/1... Step 520... d_loss: 1.5749... g_loss: 0.5442 Elapsed: 3m3s
Epoch 1/1... Step 530... d_loss: 1.6961... g_loss: 0.5491 Elapsed: 3m3s
Epoch 1/1... Step 540... d_loss: 1.5169... g_loss: 0.6923 Elapsed: 3m3s
Epoch 1/1... Step 550... d_loss: 1.5139... g_loss: 0.6956 Elapsed: 3m3s
Epoch 1/1... Step 560... d_loss: 1.5479... g_loss: 0.5850 Elapsed: 3m3s
Epoch 1/1... Step 570... d_loss: 1.4607... g_loss: 0.6857 Elapsed: 4m4s
Epoch 1/1... Step 580... d_loss: 1.5241... g_loss: 0.7021 Elapsed: 4m4s
Epoch 1/1... Step 590... d_loss: 1.5555... g_loss: 0.5617 Elapsed: 4m4s
Epoch 1/1... Step 600... d_loss: 1.5286... g_loss: 0.6146 Elapsed: 4m4s
Sample output
Epoch 1/1... Step 610... d_loss: 1.6008... g_loss: 0.6074 Elapsed: 4m4s
Epoch 1/1... Step 620... d_loss: 1.5276... g_loss: 0.6527 Elapsed: 4m4s
Epoch 1/1... Step 630... d_loss: 1.5708... g_loss: 0.6755 Elapsed: 4m4s
Epoch 1/1... Step 640... d_loss: 1.4910... g_loss: 0.6909 Elapsed: 4m4s
Epoch 1/1... Step 650... d_loss: 1.3484... g_loss: 0.7772 Elapsed: 4m4s
Epoch 1/1... Step 660... d_loss: 1.4908... g_loss: 0.7586 Elapsed: 4m4s
Epoch 1/1... Step 670... d_loss: 1.5653... g_loss: 0.6045 Elapsed: 4m4s
Epoch 1/1... Step 680... d_loss: 1.5813... g_loss: 0.6071 Elapsed: 4m4s
Epoch 1/1... Step 690... d_loss: 1.5173... g_loss: 0.7055 Elapsed: 4m4s
Epoch 1/1... Step 700... d_loss: 1.5123... g_loss: 0.6625 Elapsed: 4m4s
Sample output
Epoch 1/1... Step 710... d_loss: 1.3974... g_loss: 0.7254 Elapsed: 5m5s
Epoch 1/1... Step 720... d_loss: 1.4961... g_loss: 0.6742 Elapsed: 5m5s
Epoch 1/1... Step 730... d_loss: 1.4571... g_loss: 0.7308 Elapsed: 5m5s
Epoch 1/1... Step 740... d_loss: 1.4356... g_loss: 0.6659 Elapsed: 5m5s
Epoch 1/1... Step 750... d_loss: 1.4978... g_loss: 0.6589 Elapsed: 5m5s
Epoch 1/1... Step 760... d_loss: 1.3944... g_loss: 0.7377 Elapsed: 5m5s
Epoch 1/1... Step 770... d_loss: 1.4595... g_loss: 0.7265 Elapsed: 5m5s
Epoch 1/1... Step 780... d_loss: 1.4810... g_loss: 0.6859 Elapsed: 5m5s
Epoch 1/1... Step 790... d_loss: 1.5669... g_loss: 0.6363 Elapsed: 5m5s
Epoch 1/1... Step 800... d_loss: 1.5507... g_loss: 0.6367 Elapsed: 5m5s
Sample output
Epoch 1/1... Step 810... d_loss: 1.4911... g_loss: 0.6757 Elapsed: 5m5s
Epoch 1/1... Step 820... d_loss: 1.6101... g_loss: 0.6067 Elapsed: 5m5s
Epoch 1/1... Step 830... d_loss: 1.4064... g_loss: 0.7990 Elapsed: 5m5s
Epoch 1/1... Step 840... d_loss: 1.5387... g_loss: 0.6513 Elapsed: 5m5s
Epoch 1/1... Step 850... d_loss: 1.4977... g_loss: 0.7800 Elapsed: 6m6s
Epoch 1/1... Step 860... d_loss: 1.4018... g_loss: 0.7745 Elapsed: 6m6s
Epoch 1/1... Step 870... d_loss: 1.5172... g_loss: 0.7027 Elapsed: 6m6s
Epoch 1/1... Step 880... d_loss: 1.5826... g_loss: 0.5890 Elapsed: 6m6s
Epoch 1/1... Step 890... d_loss: 1.4146... g_loss: 0.6897 Elapsed: 6m6s
Epoch 1/1... Step 900... d_loss: 1.4246... g_loss: 0.7353 Elapsed: 6m6s
Sample output
Epoch 1/1... Step 910... d_loss: 1.5778... g_loss: 0.6657 Elapsed: 6m6s
Epoch 1/1... Step 920... d_loss: 1.4316... g_loss: 0.7103 Elapsed: 6m6s
Epoch 1/1... Step 930... d_loss: 1.4637... g_loss: 0.6594 Elapsed: 6m6s
Epoch 1/1... Step 940... d_loss: 1.5004... g_loss: 0.7082 Elapsed: 6m6s
Epoch 1/1... Step 950... d_loss: 1.4360... g_loss: 0.6956 Elapsed: 6m6s
Epoch 1/1... Step 960... d_loss: 1.4837... g_loss: 0.6379 Elapsed: 6m6s
Epoch 1/1... Step 970... d_loss: 1.4525... g_loss: 0.7001 Elapsed: 6m6s
Epoch 1/1... Step 980... d_loss: 1.4980... g_loss: 0.7595 Elapsed: 6m6s
Epoch 1/1... Step 990... d_loss: 1.4658... g_loss: 0.6868 Elapsed: 7m7s
Epoch 1/1... Step 1000... d_loss: 1.4789... g_loss: 0.6643 Elapsed: 7m7s
Sample output
Epoch 1/1... Step 1010... d_loss: 1.3555... g_loss: 0.7796 Elapsed: 7m7s
Epoch 1/1... Step 1020... d_loss: 1.6124... g_loss: 0.5980 Elapsed: 7m7s
Epoch 1/1... Step 1030... d_loss: 1.4595... g_loss: 0.6997 Elapsed: 7m7s
Epoch 1/1... Step 1040... d_loss: 1.5150... g_loss: 0.6936 Elapsed: 7m7s
Epoch 1/1... Step 1050... d_loss: 1.5187... g_loss: 0.7250 Elapsed: 7m7s
Epoch 1/1... Step 1060... d_loss: 1.4703... g_loss: 0.7229 Elapsed: 7m7s
Epoch 1/1... Step 1070... d_loss: 1.3678... g_loss: 0.7679 Elapsed: 7m7s
Epoch 1/1... Step 1080... d_loss: 1.3849... g_loss: 0.7742 Elapsed: 7m7s
Epoch 1/1... Step 1090... d_loss: 1.5126... g_loss: 0.6829 Elapsed: 7m7s
Epoch 1/1... Step 1100... d_loss: 1.4808... g_loss: 0.6879 Elapsed: 7m7s
Sample output
Epoch 1/1... Step 1110... d_loss: 1.4533... g_loss: 0.7823 Elapsed: 7m7s
Epoch 1/1... Step 1120... d_loss: 1.4877... g_loss: 0.7316 Elapsed: 7m7s
Epoch 1/1... Step 1130... d_loss: 1.3758... g_loss: 0.7576 Elapsed: 8m8s
Epoch 1/1... Step 1140... d_loss: 1.5859... g_loss: 0.6579 Elapsed: 8m8s
Epoch 1/1... Step 1150... d_loss: 1.4701... g_loss: 0.7321 Elapsed: 8m8s
Epoch 1/1... Step 1160... d_loss: 1.3028... g_loss: 0.8189 Elapsed: 8m8s
Epoch 1/1... Step 1170... d_loss: 1.4485... g_loss: 0.6405 Elapsed: 8m8s
Epoch 1/1... Step 1180... d_loss: 1.3516... g_loss: 0.8277 Elapsed: 8m8s
Epoch 1/1... Step 1190... d_loss: 1.5941... g_loss: 0.6307 Elapsed: 8m8s
Epoch 1/1... Step 1200... d_loss: 1.4205... g_loss: 0.6956 Elapsed: 8m8s
Sample output
Epoch 1/1... Step 1210... d_loss: 1.4431... g_loss: 0.7034 Elapsed: 8m8s
Epoch 1/1... Step 1220... d_loss: 1.4258... g_loss: 0.7075 Elapsed: 8m8s
Epoch 1/1... Step 1230... d_loss: 1.4141... g_loss: 0.7265 Elapsed: 8m8s
Epoch 1/1... Step 1240... d_loss: 1.4836... g_loss: 0.7026 Elapsed: 8m8s
Epoch 1/1... Step 1250... d_loss: 1.4399... g_loss: 0.6912 Elapsed: 8m8s
Epoch 1/1... Step 1260... d_loss: 1.2754... g_loss: 0.8249 Elapsed: 8m8s
Epoch 1/1... Step 1270... d_loss: 1.4797... g_loss: 0.7386 Elapsed: 9m9s
Epoch 1/1... Step 1280... d_loss: 1.4692... g_loss: 0.7203 Elapsed: 9m9s
Epoch 1/1... Step 1290... d_loss: 1.5201... g_loss: 0.7096 Elapsed: 9m9s
Epoch 1/1... Step 1300... d_loss: 1.4657... g_loss: 0.7468 Elapsed: 9m9s
Sample output
Epoch 1/1... Step 1310... d_loss: 1.3565... g_loss: 0.7787 Elapsed: 9m9s
Epoch 1/1... Step 1320... d_loss: 1.4649... g_loss: 0.7375 Elapsed: 9m9s
Epoch 1/1... Step 1330... d_loss: 1.4658... g_loss: 0.7435 Elapsed: 9m9s
Epoch 1/1... Step 1340... d_loss: 1.4408... g_loss: 0.7469 Elapsed: 9m9s
Epoch 1/1... Step 1350... d_loss: 1.4308... g_loss: 0.6874 Elapsed: 9m9s
Epoch 1/1... Step 1360... d_loss: 1.5077... g_loss: 0.7067 Elapsed: 9m9s
Epoch 1/1... Step 1370... d_loss: 1.4529... g_loss: 0.6938 Elapsed: 9m9s
Epoch 1/1... Step 1380... d_loss: 1.4712... g_loss: 0.7176 Elapsed: 9m9s
Epoch 1/1... Step 1390... d_loss: 1.5270... g_loss: 0.6593 Elapsed: 9m9s
Epoch 1/1... Step 1400... d_loss: 1.3840... g_loss: 0.7802 Elapsed: 9m9s
Sample output
Epoch 1/1... Step 1410... d_loss: 1.4934... g_loss: 0.7560 Elapsed: 10m10s
Epoch 1/1... Step 1420... d_loss: 1.3735... g_loss: 0.8379 Elapsed: 10m10s
Epoch 1/1... Step 1430... d_loss: 1.4593... g_loss: 0.7646 Elapsed: 10m10s
Epoch 1/1... Step 1440... d_loss: 1.4055... g_loss: 0.7486 Elapsed: 10m10s
Epoch 1/1... Step 1450... d_loss: 1.4992... g_loss: 0.7110 Elapsed: 10m10s
Epoch 1/1... Step 1460... d_loss: 1.4331... g_loss: 0.7494 Elapsed: 10m10s
Epoch 1/1... Step 1470... d_loss: 1.4989... g_loss: 0.6564 Elapsed: 10m10s
Epoch 1/1... Step 1480... d_loss: 1.5309... g_loss: 0.7049 Elapsed: 10m10s
Epoch 1/1... Step 1490... d_loss: 1.3661... g_loss: 0.7295 Elapsed: 10m10s
Epoch 1/1... Step 1500... d_loss: 1.4921... g_loss: 0.6643 Elapsed: 10m10s
Sample output
Epoch 1/1... Step 1510... d_loss: 1.3193... g_loss: 0.7597 Elapsed: 10m10s
Epoch 1/1... Step 1520... d_loss: 1.4668... g_loss: 0.6887 Elapsed: 10m10s
Epoch 1/1... Step 1530... d_loss: 1.4737... g_loss: 0.7014 Elapsed: 10m10s
Epoch 1/1... Step 1540... d_loss: 1.4726... g_loss: 0.7673 Elapsed: 10m10s
Epoch 1/1... Step 1550... d_loss: 1.3353... g_loss: 0.8026 Elapsed: 11m11s
Epoch 1/1... Step 1560... d_loss: 1.4479... g_loss: 0.7642 Elapsed: 11m11s
Epoch 1/1... Step 1570... d_loss: 1.4141... g_loss: 0.7659 Elapsed: 11m11s
Epoch 1/1... Step 1580... d_loss: 1.4208... g_loss: 0.7498 Elapsed: 11m11s
Epoch 1/1... Step 1590... d_loss: 1.4511... g_loss: 0.7323 Elapsed: 11m11s
Epoch 1/1... Step 1600... d_loss: 1.4844... g_loss: 0.6986 Elapsed: 11m11s
Sample output
Epoch 1/1... Step 1610... d_loss: 1.4002... g_loss: 0.6888 Elapsed: 11m11s
Epoch 1/1... Step 1620... d_loss: 1.3729... g_loss: 0.7331 Elapsed: 11m11s
Epoch 1/1... Step 1630... d_loss: 1.4435... g_loss: 0.7962 Elapsed: 11m11s
Epoch 1/1... Step 1640... d_loss: 1.4978... g_loss: 0.6834 Elapsed: 11m11s
Epoch 1/1... Step 1650... d_loss: 1.3991... g_loss: 0.7689 Elapsed: 11m11s
Epoch 1/1... Step 1660... d_loss: 1.4377... g_loss: 0.7305 Elapsed: 11m11s
Epoch 1/1... Step 1670... d_loss: 1.5159... g_loss: 0.7220 Elapsed: 11m11s
Epoch 1/1... Step 1680... d_loss: 1.5107... g_loss: 0.6965 Elapsed: 11m11s
Epoch 1/1... Step 1690... d_loss: 1.4127... g_loss: 0.7463 Elapsed: 12m12s
Epoch 1/1... Step 1700... d_loss: 1.3652... g_loss: 0.7957 Elapsed: 12m12s
Sample output
Epoch 1/1... Step 1710... d_loss: 1.4788... g_loss: 0.8064 Elapsed: 12m12s
Epoch 1/1... Step 1720... d_loss: 1.3949... g_loss: 0.8039 Elapsed: 12m12s
Epoch 1/1... Step 1730... d_loss: 1.3627... g_loss: 0.8473 Elapsed: 12m12s
Epoch 1/1... Step 1740... d_loss: 1.4178... g_loss: 0.7761 Elapsed: 12m12s
Epoch 1/1... Step 1750... d_loss: 1.3143... g_loss: 0.7953 Elapsed: 12m12s
Epoch 1/1... Step 1760... d_loss: 1.4020... g_loss: 0.7970 Elapsed: 12m12s
Epoch 1/1... Step 1770... d_loss: 1.4698... g_loss: 0.7092 Elapsed: 12m12s
Epoch 1/1... Step 1780... d_loss: 1.4954... g_loss: 0.6928 Elapsed: 12m12s
Epoch 1/1... Step 1790... d_loss: 1.4654... g_loss: 0.6798 Elapsed: 12m12s
Epoch 1/1... Step 1800... d_loss: 1.3917... g_loss: 0.7396 Elapsed: 12m12s
Sample output
Epoch 1/1... Step 1810... d_loss: 1.3636... g_loss: 0.8011 Elapsed: 12m12s
Epoch 1/1... Step 1820... d_loss: 1.3556... g_loss: 0.7822 Elapsed: 12m12s
Epoch 1/1... Step 1830... d_loss: 1.3935... g_loss: 0.7207 Elapsed: 13m13s
Epoch 1/1... Step 1840... d_loss: 1.4150... g_loss: 0.7945 Elapsed: 13m13s
Epoch 1/1... Step 1850... d_loss: 1.4560... g_loss: 0.7492 Elapsed: 13m13s
Epoch 1/1... Step 1860... d_loss: 1.4092... g_loss: 0.8278 Elapsed: 13m13s
Epoch 1/1... Step 1870... d_loss: 1.3834... g_loss: 0.7671 Elapsed: 13m13s
Epoch 1/1... Step 1880... d_loss: 1.3901... g_loss: 0.7717 Elapsed: 13m13s
Epoch 1/1... Step 1890... d_loss: 1.4180... g_loss: 0.7183 Elapsed: 13m13s
Epoch 1/1... Step 1900... d_loss: 1.4703... g_loss: 0.6655 Elapsed: 13m13s
Sample output
Epoch 1/1... Step 1910... d_loss: 1.3678... g_loss: 0.7820 Elapsed: 13m13s
Epoch 1/1... Step 1920... d_loss: 1.4844... g_loss: 0.6750 Elapsed: 13m13s
Epoch 1/1... Step 1930... d_loss: 1.4591... g_loss: 0.6999 Elapsed: 13m13s
Epoch 1/1... Step 1940... d_loss: 1.4445... g_loss: 0.7169 Elapsed: 13m13s
Epoch 1/1... Step 1950... d_loss: 1.4896... g_loss: 0.6822 Elapsed: 13m13s
Epoch 1/1... Step 1960... d_loss: 1.5526... g_loss: 0.6586 Elapsed: 13m13s
Epoch 1/1... Step 1970... d_loss: 1.3171... g_loss: 0.8306 Elapsed: 14m14s
Epoch 1/1... Step 1980... d_loss: 1.3676... g_loss: 0.7848 Elapsed: 14m14s
Epoch 1/1... Step 1990... d_loss: 1.3699... g_loss: 0.8144 Elapsed: 14m14s
Epoch 1/1... Step 2000... d_loss: 1.3361... g_loss: 0.7809 Elapsed: 14m14s
Sample output
Epoch 1/1... Step 2010... d_loss: 1.4741... g_loss: 0.7259 Elapsed: 14m14s
Epoch 1/1... Step 2020... d_loss: 1.4473... g_loss: 0.7178 Elapsed: 14m14s
Epoch 1/1... Step 2030... d_loss: 1.5334... g_loss: 0.6152 Elapsed: 14m14s
Epoch 1/1... Step 2040... d_loss: 1.3203... g_loss: 0.7038 Elapsed: 14m14s
Epoch 1/1... Step 2050... d_loss: 1.4415... g_loss: 0.7242 Elapsed: 14m14s
Epoch 1/1... Step 2060... d_loss: 1.4599... g_loss: 0.6790 Elapsed: 14m14s
Epoch 1/1... Step 2070... d_loss: 1.4361... g_loss: 0.7718 Elapsed: 14m14s
Epoch 1/1... Step 2080... d_loss: 1.3989... g_loss: 0.7540 Elapsed: 14m14s
Epoch 1/1... Step 2090... d_loss: 1.4548... g_loss: 0.6746 Elapsed: 14m14s
Epoch 1/1... Step 2100... d_loss: 1.3494... g_loss: 0.8014 Elapsed: 14m14s
Sample output
Epoch 1/1... Step 2110... d_loss: 1.3884... g_loss: 0.7887 Elapsed: 15m15s
Epoch 1/1... Step 2120... d_loss: 1.4603... g_loss: 0.6798 Elapsed: 15m15s
Epoch 1/1... Step 2130... d_loss: 1.4084... g_loss: 0.7293 Elapsed: 15m15s
Epoch 1/1... Step 2140... d_loss: 1.4193... g_loss: 0.7150 Elapsed: 15m15s
Epoch 1/1... Step 2150... d_loss: 1.4112... g_loss: 0.7499 Elapsed: 15m15s
Epoch 1/1... Step 2160... d_loss: 1.4496... g_loss: 0.7870 Elapsed: 15m15s
Epoch 1/1... Step 2170... d_loss: 1.4718... g_loss: 0.6928 Elapsed: 15m15s
Epoch 1/1... Step 2180... d_loss: 1.4789... g_loss: 0.6750 Elapsed: 15m15s
Epoch 1/1... Step 2190... d_loss: 1.5541... g_loss: 0.6210 Elapsed: 15m15s
Epoch 1/1... Step 2200... d_loss: 1.4196... g_loss: 0.7505 Elapsed: 15m15s
Sample output
Epoch 1/1... Step 2210... d_loss: 1.3597... g_loss: 0.7507 Elapsed: 15m15s
Epoch 1/1... Step 2220... d_loss: 1.2742... g_loss: 0.8341 Elapsed: 15m15s
Epoch 1/1... Step 2230... d_loss: 1.4996... g_loss: 0.7480 Elapsed: 15m15s
Epoch 1/1... Step 2240... d_loss: 1.3651... g_loss: 0.7367 Elapsed: 15m15s
Epoch 1/1... Step 2250... d_loss: 1.5323... g_loss: 0.6110 Elapsed: 16m16s
Epoch 1/1... Step 2260... d_loss: 1.4965... g_loss: 0.6062 Elapsed: 16m16s
Epoch 1/1... Step 2270... d_loss: 1.3836... g_loss: 0.8221 Elapsed: 16m16s
Epoch 1/1... Step 2280... d_loss: 1.3956... g_loss: 0.7697 Elapsed: 16m16s
Epoch 1/1... Step 2290... d_loss: 1.3960... g_loss: 0.8491 Elapsed: 16m16s
Epoch 1/1... Step 2300... d_loss: 1.4152... g_loss: 0.7271 Elapsed: 16m16s
Sample output
Epoch 1/1... Step 2310... d_loss: 1.3890... g_loss: 0.7542 Elapsed: 16m16s
Epoch 1/1... Step 2320... d_loss: 1.3618... g_loss: 0.8626 Elapsed: 16m16s
Epoch 1/1... Step 2330... d_loss: 1.2566... g_loss: 0.7871 Elapsed: 16m16s
Epoch 1/1... Step 2340... d_loss: 1.3063... g_loss: 0.9627 Elapsed: 16m16s
Epoch 1/1... Step 2350... d_loss: 1.2523... g_loss: 0.7448 Elapsed: 16m16s
Epoch 1/1... Step 2360... d_loss: 1.4161... g_loss: 0.5904 Elapsed: 16m16s
Epoch 1/1... Step 2370... d_loss: 1.9077... g_loss: 0.2480 Elapsed: 16m16s
Epoch 1/1... Step 2380... d_loss: 0.9005... g_loss: 1.2471 Elapsed: 16m16s
Epoch 1/1... Step 2390... d_loss: 1.1857... g_loss: 1.5665 Elapsed: 17m17s
Epoch 1/1... Step 2400... d_loss: 0.8022... g_loss: 1.4297 Elapsed: 17m17s
Sample output
Epoch 1/1... Step 2410... d_loss: 1.2493... g_loss: 1.8182 Elapsed: 17m17s
Epoch 1/1... Step 2420... d_loss: 1.2514... g_loss: 0.7308 Elapsed: 17m17s
Epoch 1/1... Step 2430... d_loss: 1.2035... g_loss: 0.6984 Elapsed: 17m17s
Epoch 1/1... Step 2440... d_loss: 1.3637... g_loss: 0.6522 Elapsed: 17m17s
Epoch 1/1... Step 2450... d_loss: 1.1374... g_loss: 3.0479 Elapsed: 17m17s
Epoch 1/1... Step 2460... d_loss: 1.3331... g_loss: 0.8155 Elapsed: 17m17s
Epoch 1/1... Step 2470... d_loss: 1.0833... g_loss: 0.8913 Elapsed: 17m17s
Epoch 1/1... Step 2480... d_loss: 1.3742... g_loss: 1.4492 Elapsed: 17m17s
Epoch 1/1... Step 2490... d_loss: 1.3973... g_loss: 1.1137 Elapsed: 17m17s
Epoch 1/1... Step 2500... d_loss: 1.7094... g_loss: 0.5711 Elapsed: 17m17s
Sample output
Epoch 1/1... Step 2510... d_loss: 1.2686... g_loss: 0.8472 Elapsed: 17m17s
Epoch 1/1... Step 2520... d_loss: 1.0144... g_loss: 1.8604 Elapsed: 17m17s
Epoch 1/1... Step 2530... d_loss: 1.2473... g_loss: 0.9352 Elapsed: 18m18s
Epoch 1/1... Step 2540... d_loss: 1.2880... g_loss: 1.0160 Elapsed: 18m18s
Epoch 1/1... Step 2550... d_loss: 1.3214... g_loss: 0.7303 Elapsed: 18m18s
Epoch 1/1... Step 2560... d_loss: 1.2905... g_loss: 0.9075 Elapsed: 18m18s
Epoch 1/1... Step 2570... d_loss: 1.0879... g_loss: 1.2500 Elapsed: 18m18s
Epoch 1/1... Step 2580... d_loss: 1.1682... g_loss: 1.1968 Elapsed: 18m18s
Epoch 1/1... Step 2590... d_loss: 1.5022... g_loss: 0.6065 Elapsed: 18m18s
Epoch 1/1... Step 2600... d_loss: 1.5609... g_loss: 0.5294 Elapsed: 18m18s
Sample output
Epoch 1/1... Step 2610... d_loss: 1.2148... g_loss: 1.1761 Elapsed: 18m18s
Epoch 1/1... Step 2620... d_loss: 1.5911... g_loss: 0.5891 Elapsed: 18m18s
Epoch 1/1... Step 2630... d_loss: 1.3462... g_loss: 0.9183 Elapsed: 18m18s
Epoch 1/1... Step 2640... d_loss: 1.4417... g_loss: 0.6242 Elapsed: 18m18s
Epoch 1/1... Step 2650... d_loss: 1.2888... g_loss: 0.7428 Elapsed: 18m18s
Epoch 1/1... Step 2660... d_loss: 1.5546... g_loss: 0.6655 Elapsed: 19m19s
Epoch 1/1... Step 2670... d_loss: 1.2706... g_loss: 0.7248 Elapsed: 19m19s
Epoch 1/1... Step 2680... d_loss: 1.4563... g_loss: 0.6428 Elapsed: 19m19s
Epoch 1/1... Step 2690... d_loss: 1.3877... g_loss: 0.7397 Elapsed: 19m19s
Epoch 1/1... Step 2700... d_loss: 1.3755... g_loss: 0.7044 Elapsed: 19m19s
Sample output
Epoch 1/1... Step 2710... d_loss: 1.2789... g_loss: 0.8464 Elapsed: 19m19s
Epoch 1/1... Step 2720... d_loss: 1.4909... g_loss: 0.7664 Elapsed: 19m19s
Epoch 1/1... Step 2730... d_loss: 1.4195... g_loss: 0.6663 Elapsed: 19m19s
Epoch 1/1... Step 2740... d_loss: 1.3659... g_loss: 0.7704 Elapsed: 19m19s
Epoch 1/1... Step 2750... d_loss: 1.2231... g_loss: 1.0291 Elapsed: 19m19s
Epoch 1/1... Step 2760... d_loss: 1.6794... g_loss: 0.4586 Elapsed: 19m19s
Epoch 1/1... Step 2770... d_loss: 1.4966... g_loss: 0.6355 Elapsed: 19m19s
Epoch 1/1... Step 2780... d_loss: 1.3945... g_loss: 0.7046 Elapsed: 19m19s
Epoch 1/1... Step 2790... d_loss: 1.4108... g_loss: 0.6482 Elapsed: 19m19s
Epoch 1/1... Step 2800... d_loss: 1.4374... g_loss: 0.7032 Elapsed: 20m20s
Sample output
Epoch 1/1... Step 2810... d_loss: 1.3925... g_loss: 0.7814 Elapsed: 20m20s
Epoch 1/1... Step 2820... d_loss: 1.5126... g_loss: 0.5267 Elapsed: 20m20s
Epoch 1/1... Step 2830... d_loss: 1.2943... g_loss: 0.6590 Elapsed: 20m20s
Epoch 1/1... Step 2840... d_loss: 1.3983... g_loss: 0.6827 Elapsed: 20m20s
Epoch 1/1... Step 2850... d_loss: 1.4106... g_loss: 0.5992 Elapsed: 20m20s
Epoch 1/1... Step 2860... d_loss: 1.5046... g_loss: 0.6038 Elapsed: 20m20s
Epoch 1/1... Step 2870... d_loss: 1.2808... g_loss: 0.8903 Elapsed: 20m20s
Epoch 1/1... Step 2880... d_loss: 1.2534... g_loss: 0.9573 Elapsed: 20m20s
Epoch 1/1... Step 2890... d_loss: 1.8111... g_loss: 0.3967 Elapsed: 20m20s
Epoch 1/1... Step 2900... d_loss: 1.5013... g_loss: 0.6705 Elapsed: 20m20s
Sample output
Epoch 1/1... Step 2910... d_loss: 1.5177... g_loss: 0.5796 Elapsed: 20m20s
Epoch 1/1... Step 2920... d_loss: 1.3979... g_loss: 0.8061 Elapsed: 20m20s
Epoch 1/1... Step 2930... d_loss: 1.4095... g_loss: 0.7138 Elapsed: 20m20s
Epoch 1/1... Step 2940... d_loss: 1.4699... g_loss: 0.6458 Elapsed: 21m21s
Epoch 1/1... Step 2950... d_loss: 1.2557... g_loss: 0.8499 Elapsed: 21m21s
Epoch 1/1... Step 2960... d_loss: 1.3833... g_loss: 0.7700 Elapsed: 21m21s
Epoch 1/1... Step 2970... d_loss: 1.3875... g_loss: 0.6709 Elapsed: 21m21s
Epoch 1/1... Step 2980... d_loss: 1.3405... g_loss: 0.8106 Elapsed: 21m21s
Epoch 1/1... Step 2990... d_loss: 1.2824... g_loss: 0.8311 Elapsed: 21m21s
Epoch 1/1... Step 3000... d_loss: 1.3365... g_loss: 0.7428 Elapsed: 21m21s
Sample output
Epoch 1/1... Step 3010... d_loss: 1.3715... g_loss: 0.8041 Elapsed: 21m21s
Epoch 1/1... Step 3020... d_loss: 1.4801... g_loss: 0.7214 Elapsed: 21m21s
Epoch 1/1... Step 3030... d_loss: 1.2920... g_loss: 0.8350 Elapsed: 21m21s
Epoch 1/1... Step 3040... d_loss: 1.4455... g_loss: 0.7326 Elapsed: 21m21s
Epoch 1/1... Step 3050... d_loss: 1.3374... g_loss: 0.7518 Elapsed: 21m21s
Epoch 1/1... Step 3060... d_loss: 1.4480... g_loss: 0.6523 Elapsed: 21m21s
Epoch 1/1... Step 3070... d_loss: 1.5717... g_loss: 0.6694 Elapsed: 21m21s
Epoch 1/1... Step 3080... d_loss: 1.1463... g_loss: 1.0212 Elapsed: 22m22s
Epoch 1/1... Step 3090... d_loss: 1.7312... g_loss: 0.5318 Elapsed: 22m22s
Epoch 1/1... Step 3100... d_loss: 1.2851... g_loss: 0.8068 Elapsed: 22m22s
Sample output
Epoch 1/1... Step 3110... d_loss: 1.4265... g_loss: 0.7114 Elapsed: 22m22s
Epoch 1/1... Step 3120... d_loss: 1.4045... g_loss: 0.6665 Elapsed: 22m22s
Epoch 1/1... Step 3130... d_loss: 1.2694... g_loss: 0.9353 Elapsed: 22m22s
Epoch 1/1... Step 3140... d_loss: 1.4547... g_loss: 0.6433 Elapsed: 22m22s
Epoch 1/1... Step 3150... d_loss: 1.4071... g_loss: 0.7833 Elapsed: 22m22s
Epoch 1/1... Step 3160... d_loss: 1.3863... g_loss: 0.7447 Elapsed: 22m22s
Epoch 1/1... Step 3170... d_loss: 1.3902... g_loss: 0.6572 Elapsed: 22m22s
Epoch 1/1... Step 3180... d_loss: 1.2808... g_loss: 0.8744 Elapsed: 22m22s
Epoch 1/1... Step 3190... d_loss: 1.5232... g_loss: 0.6017 Elapsed: 22m22s
Epoch 1/1... Step 3200... d_loss: 1.3465... g_loss: 0.7666 Elapsed: 22m22s
Sample output
Epoch 1/1... Step 3210... d_loss: 1.3434... g_loss: 0.7867 Elapsed: 22m22s
Epoch 1/1... Step 3220... d_loss: 1.4091... g_loss: 0.6765 Elapsed: 23m23s
Epoch 1/1... Step 3230... d_loss: 1.3203... g_loss: 0.8768 Elapsed: 23m23s
Epoch 1/1... Step 3240... d_loss: 1.3626... g_loss: 0.6387 Elapsed: 23m23s
Epoch 1/1... Step 3250... d_loss: 1.3295... g_loss: 0.6949 Elapsed: 23m23s
Epoch 1/1... Step 3260... d_loss: 1.2100... g_loss: 0.9000 Elapsed: 23m23s
Epoch 1/1... Step 3270... d_loss: 1.3598... g_loss: 0.7327 Elapsed: 23m23s
Epoch 1/1... Step 3280... d_loss: 1.5082... g_loss: 0.6421 Elapsed: 23m23s
Epoch 1/1... Step 3290... d_loss: 1.4020... g_loss: 0.7352 Elapsed: 23m23s
Epoch 1/1... Step 3300... d_loss: 1.4227... g_loss: 0.6797 Elapsed: 23m23s
Sample output
Epoch 1/1... Step 3310... d_loss: 1.3303... g_loss: 0.7327 Elapsed: 23m23s
Epoch 1/1... Step 3320... d_loss: 1.3389... g_loss: 0.8820 Elapsed: 23m23s
Epoch 1/1... Step 3330... d_loss: 1.6805... g_loss: 0.5078 Elapsed: 23m23s
Epoch 1/1... Step 3340... d_loss: 1.4383... g_loss: 0.6662 Elapsed: 23m23s
Epoch 1/1... Step 3350... d_loss: 1.6444... g_loss: 0.4871 Elapsed: 23m23s
Epoch 1/1... Step 3360... d_loss: 1.2374... g_loss: 0.8328 Elapsed: 24m24s
Epoch 1/1... Step 3370... d_loss: 1.4379... g_loss: 0.6456 Elapsed: 24m24s
Epoch 1/1... Step 3380... d_loss: 1.3495... g_loss: 0.8775 Elapsed: 24m24s
Epoch 1/1... Step 3390... d_loss: 1.2112... g_loss: 0.9539 Elapsed: 24m24s
Epoch 1/1... Step 3400... d_loss: 1.1627... g_loss: 0.8267 Elapsed: 24m24s
Sample output
Epoch 1/1... Step 3410... d_loss: 1.3850... g_loss: 0.6255 Elapsed: 24m24s
Epoch 1/1... Step 3420... d_loss: 1.3688... g_loss: 0.7935 Elapsed: 24m24s
Epoch 1/1... Step 3430... d_loss: 1.4082... g_loss: 0.7924 Elapsed: 24m24s
Epoch 1/1... Step 3440... d_loss: 1.2959... g_loss: 0.6985 Elapsed: 24m24s
Epoch 1/1... Step 3450... d_loss: 1.3145... g_loss: 0.8333 Elapsed: 24m24s
Epoch 1/1... Step 3460... d_loss: 1.5610... g_loss: 0.6260 Elapsed: 24m24s
Epoch 1/1... Step 3470... d_loss: 1.2002... g_loss: 0.8700 Elapsed: 24m24s
Epoch 1/1... Step 3480... d_loss: 1.3464... g_loss: 0.7556 Elapsed: 24m24s
Epoch 1/1... Step 3490... d_loss: 1.5716... g_loss: 0.4782 Elapsed: 24m24s
Epoch 1/1... Step 3500... d_loss: 1.3205... g_loss: 0.7708 Elapsed: 25m25s
Sample output
Epoch 1/1... Step 3510... d_loss: 1.2310... g_loss: 0.8793 Elapsed: 25m25s
Epoch 1/1... Step 3520... d_loss: 1.5513... g_loss: 0.4603 Elapsed: 25m25s
Epoch 1/1... Step 3530... d_loss: 1.3976... g_loss: 0.8035 Elapsed: 25m25s
Epoch 1/1... Step 3540... d_loss: 1.6798... g_loss: 0.3415 Elapsed: 25m25s
Epoch 1/1... Step 3550... d_loss: 1.2359... g_loss: 0.9272 Elapsed: 25m25s
Epoch 1/1... Step 3560... d_loss: 1.2970... g_loss: 0.7407 Elapsed: 25m25s
Epoch 1/1... Step 3570... d_loss: 1.3393... g_loss: 0.7369 Elapsed: 25m25s
Epoch 1/1... Step 3580... d_loss: 1.3760... g_loss: 1.1151 Elapsed: 25m25s
Epoch 1/1... Step 3590... d_loss: 1.1590... g_loss: 1.0086 Elapsed: 25m25s
Epoch 1/1... Step 3600... d_loss: 0.9249... g_loss: 1.2889 Elapsed: 25m25s
Sample output
Epoch 1/1... Step 3610... d_loss: 1.0089... g_loss: 1.4436 Elapsed: 25m25s
Epoch 1/1... Step 3620... d_loss: 1.1091... g_loss: 0.9622 Elapsed: 25m25s
Epoch 1/1... Step 3630... d_loss: 1.4392... g_loss: 0.8271 Elapsed: 25m25s
Epoch 1/1... Step 3640... d_loss: 1.1905... g_loss: 0.7031 Elapsed: 26m26s
Epoch 1/1... Step 3650... d_loss: 0.8972... g_loss: 1.2857 Elapsed: 26m26s
Epoch 1/1... Step 3660... d_loss: 1.2146... g_loss: 1.1693 Elapsed: 26m26s
Epoch 1/1... Step 3670... d_loss: 0.9572... g_loss: 1.2696 Elapsed: 26m26s
Epoch 1/1... Step 3680... d_loss: 0.9923... g_loss: 1.2449 Elapsed: 26m26s
Epoch 1/1... Step 3690... d_loss: 1.3680... g_loss: 1.2012 Elapsed: 26m26s
Epoch 1/1... Step 3700... d_loss: 1.6188... g_loss: 0.3609 Elapsed: 26m26s
Sample output
Epoch 1/1... Step 3710... d_loss: 1.2625... g_loss: 0.5913 Elapsed: 26m26s
Epoch 1/1... Step 3720... d_loss: 1.3170... g_loss: 1.2535 Elapsed: 26m26s
Epoch 1/1... Step 3730... d_loss: 0.9383... g_loss: 1.4182 Elapsed: 26m26s
Epoch 1/1... Step 3740... d_loss: 1.2036... g_loss: 0.7191 Elapsed: 26m26s
Epoch 1/1... Step 3750... d_loss: 0.8372... g_loss: 1.8212 Elapsed: 26m26s
Epoch 1/1... Step 3760... d_loss: 1.2214... g_loss: 0.6407 Elapsed: 26m26s
Epoch 1/1... Step 3770... d_loss: 1.5044... g_loss: 0.4350 Elapsed: 26m26s
Epoch 1/1... Step 3780... d_loss: 1.3719... g_loss: 0.8840 Elapsed: 27m27s
Epoch 1/1... Step 3790... d_loss: 1.2605... g_loss: 0.6553 Elapsed: 27m27s
Epoch 1/1... Step 3800... d_loss: 1.1511... g_loss: 1.2596 Elapsed: 27m27s
Sample output
Epoch 1/1... Step 3810... d_loss: 1.0533... g_loss: 2.5079 Elapsed: 27m27s
Epoch 1/1... Step 3820... d_loss: 0.8441... g_loss: 1.5014 Elapsed: 27m27s
Epoch 1/1... Step 3830... d_loss: 0.8512... g_loss: 2.0458 Elapsed: 27m27s
Epoch 1/1... Step 3840... d_loss: 0.9635... g_loss: 1.3573 Elapsed: 27m27s
Epoch 1/1... Step 3850... d_loss: 1.0090... g_loss: 1.5071 Elapsed: 27m27s
Epoch 1/1... Step 3860... d_loss: 1.0958... g_loss: 1.4702 Elapsed: 27m27s
Epoch 1/1... Step 3870... d_loss: 0.9269... g_loss: 1.0830 Elapsed: 27m27s
Epoch 1/1... Step 3880... d_loss: 1.7103... g_loss: 0.3343 Elapsed: 27m27s
Epoch 1/1... Step 3890... d_loss: 0.9574... g_loss: 1.7517 Elapsed: 27m27s
Epoch 1/1... Step 3900... d_loss: 0.8066... g_loss: 1.6841 Elapsed: 27m27s
Sample output
Epoch 1/1... Step 3910... d_loss: 1.4726... g_loss: 0.6436 Elapsed: 27m27s
Epoch 1/1... Step 3920... d_loss: 0.9542... g_loss: 1.4378 Elapsed: 28m28s
Epoch 1/1... Step 3930... d_loss: 1.0960... g_loss: 1.6379 Elapsed: 28m28s
Epoch 1/1... Step 3940... d_loss: 1.0877... g_loss: 1.8696 Elapsed: 28m28s
Epoch 1/1... Step 3950... d_loss: 0.9115... g_loss: 3.0248 Elapsed: 28m28s
Epoch 1/1... Step 3960... d_loss: 1.0193... g_loss: 0.9406 Elapsed: 28m28s
Epoch 1/1... Step 3970... d_loss: 1.3651... g_loss: 0.6704 Elapsed: 28m28s
Epoch 1/1... Step 3980... d_loss: 1.4134... g_loss: 0.5386 Elapsed: 28m28s
Epoch 1/1... Step 3990... d_loss: 1.1389... g_loss: 1.4705 Elapsed: 28m28s
Epoch 1/1... Step 4000... d_loss: 1.0256... g_loss: 1.1998 Elapsed: 28m28s
Sample output
Epoch 1/1... Step 4010... d_loss: 1.0487... g_loss: 1.1840 Elapsed: 28m28s
Epoch 1/1... Step 4020... d_loss: 1.1712... g_loss: 0.6981 Elapsed: 28m28s
Epoch 1/1... Step 4030... d_loss: 1.4847... g_loss: 0.5534 Elapsed: 28m28s
Epoch 1/1... Step 4040... d_loss: 1.2706... g_loss: 0.8381 Elapsed: 28m28s
Epoch 1/1... Step 4050... d_loss: 1.0306... g_loss: 1.5213 Elapsed: 28m28s
Epoch 1/1... Step 4060... d_loss: 1.3922... g_loss: 0.5255 Elapsed: 29m29s
Epoch 1/1... Step 4070... d_loss: 1.1905... g_loss: 0.8001 Elapsed: 29m29s
Epoch 1/1... Step 4080... d_loss: 1.2074... g_loss: 1.0057 Elapsed: 29m29s
Epoch 1/1... Step 4090... d_loss: 1.0801... g_loss: 0.9585 Elapsed: 29m29s
Epoch 1/1... Step 4100... d_loss: 1.6000... g_loss: 0.4616 Elapsed: 29m29s
Sample output
Epoch 1/1... Step 4110... d_loss: 1.0866... g_loss: 1.5547 Elapsed: 29m29s
Epoch 1/1... Step 4120... d_loss: 1.3716... g_loss: 1.0877 Elapsed: 29m29s
Epoch 1/1... Step 4130... d_loss: 0.8593... g_loss: 1.8683 Elapsed: 29m29s
Epoch 1/1... Step 4140... d_loss: 0.9788... g_loss: 1.0548 Elapsed: 29m29s
Epoch 1/1... Step 4150... d_loss: 0.8617... g_loss: 1.4990 Elapsed: 29m29s
Epoch 1/1... Step 4160... d_loss: 1.4013... g_loss: 0.6575 Elapsed: 29m29s
Epoch 1/1... Step 4170... d_loss: 1.1845... g_loss: 0.7690 Elapsed: 29m29s
Epoch 1/1... Step 4180... d_loss: 0.9708... g_loss: 1.3768 Elapsed: 29m29s
Epoch 1/1... Step 4190... d_loss: 1.3270... g_loss: 0.6648 Elapsed: 29m29s
Epoch 1/1... Step 4200... d_loss: 1.0873... g_loss: 0.8693 Elapsed: 30m30s
Sample output
Epoch 1/1... Step 4210... d_loss: 1.1070... g_loss: 0.9151 Elapsed: 30m30s
Epoch 1/1... Step 4220... d_loss: 1.1204... g_loss: 0.9589 Elapsed: 30m30s
Epoch 1/1... Step 4230... d_loss: 1.3991... g_loss: 0.5171 Elapsed: 30m30s
Epoch 1/1... Step 4240... d_loss: 0.7914... g_loss: 1.5578 Elapsed: 30m30s
Epoch 1/1... Step 4250... d_loss: 0.4763... g_loss: 3.9270 Elapsed: 30m30s
Epoch 1/1... Step 4260... d_loss: 1.0331... g_loss: 0.9717 Elapsed: 30m30s
Epoch 1/1... Step 4270... d_loss: 1.2887... g_loss: 0.7201 Elapsed: 30m30s
Epoch 1/1... Step 4280... d_loss: 1.0640... g_loss: 1.1430 Elapsed: 30m30s
Epoch 1/1... Step 4290... d_loss: 1.3862... g_loss: 0.5739 Elapsed: 30m30s
Epoch 1/1... Step 4300... d_loss: 1.3631... g_loss: 0.5383 Elapsed: 30m30s
Sample output
Epoch 1/1... Step 4310... d_loss: 0.6826... g_loss: 1.7768 Elapsed: 30m30s
Epoch 1/1... Step 4320... d_loss: 1.2665... g_loss: 0.7283 Elapsed: 30m30s
Epoch 1/1... Step 4330... d_loss: 1.1790... g_loss: 0.8878 Elapsed: 30m30s
Epoch 1/1... Step 4340... d_loss: 1.2221... g_loss: 0.6611 Elapsed: 31m31s
Epoch 1/1... Step 4350... d_loss: 1.0158... g_loss: 1.0870 Elapsed: 31m31s
Epoch 1/1... Step 4360... d_loss: 1.4528... g_loss: 0.4649 Elapsed: 31m31s
Epoch 1/1... Step 4370... d_loss: 1.4740... g_loss: 0.4330 Elapsed: 31m31s
Epoch 1/1... Step 4380... d_loss: 1.5538... g_loss: 0.3963 Elapsed: 31m31s
Epoch 1/1... Step 4390... d_loss: 1.4256... g_loss: 0.5680 Elapsed: 31m31s
Epoch 1/1... Step 4400... d_loss: 0.8491... g_loss: 1.3884 Elapsed: 31m31s
Sample output
Epoch 1/1... Step 4410... d_loss: 0.9775... g_loss: 0.9808 Elapsed: 31m31s
Epoch 1/1... Step 4420... d_loss: 0.9212... g_loss: 1.1138 Elapsed: 31m31s
Epoch 1/1... Step 4430... d_loss: 1.1170... g_loss: 0.8152 Elapsed: 31m31s
Epoch 1/1... Step 4440... d_loss: 1.1880... g_loss: 0.6845 Elapsed: 31m31s
Epoch 1/1... Step 4450... d_loss: 1.0042... g_loss: 1.1234 Elapsed: 31m31s
Epoch 1/1... Step 4460... d_loss: 0.8811... g_loss: 1.2562 Elapsed: 31m31s
Epoch 1/1... Step 4470... d_loss: 0.6529... g_loss: 1.6815 Elapsed: 31m31s
Epoch 1/1... Step 4480... d_loss: 1.1179... g_loss: 1.9842 Elapsed: 32m32s
Epoch 1/1... Step 4490... d_loss: 1.6961... g_loss: 0.3486 Elapsed: 32m32s
Epoch 1/1... Step 4500... d_loss: 0.9833... g_loss: 0.8704 Elapsed: 32m32s
Sample output
Epoch 1/1... Step 4510... d_loss: 0.7004... g_loss: 1.7272 Elapsed: 32m32s
Epoch 1/1... Step 4520... d_loss: 1.0623... g_loss: 0.8764 Elapsed: 32m32s
Epoch 1/1... Step 4530... d_loss: 1.3387... g_loss: 0.5145 Elapsed: 32m32s
Epoch 1/1... Step 4540... d_loss: 1.0942... g_loss: 1.8012 Elapsed: 32m32s
Epoch 1/1... Step 4550... d_loss: 0.6334... g_loss: 1.7384 Elapsed: 32m32s
Epoch 1/1... Step 4560... d_loss: 0.6431... g_loss: 2.8170 Elapsed: 32m32s
Epoch 1/1... Step 4570... d_loss: 0.8108... g_loss: 1.4156 Elapsed: 32m32s
Epoch 1/1... Step 4580... d_loss: 1.0169... g_loss: 1.6227 Elapsed: 32m32s
Epoch 1/1... Step 4590... d_loss: 0.7672... g_loss: 2.5565 Elapsed: 32m32s
Epoch 1/1... Step 4600... d_loss: 0.7373... g_loss: 1.3392 Elapsed: 32m32s
Sample output
Epoch 1/1... Step 4610... d_loss: 0.7468... g_loss: 3.5286 Elapsed: 32m32s
Epoch 1/1... Step 4620... d_loss: 1.0390... g_loss: 1.0253 Elapsed: 33m33s
Epoch 1/1... Step 4630... d_loss: 1.0401... g_loss: 0.8807 Elapsed: 33m33s
Epoch 1/1... Step 4640... d_loss: 0.4864... g_loss: 2.8677 Elapsed: 33m33s
Epoch 1/1... Step 4650... d_loss: 0.8313... g_loss: 1.2971 Elapsed: 33m33s
Epoch 1/1... Step 4660... d_loss: 1.4003... g_loss: 0.5370 Elapsed: 33m33s
Epoch 1/1... Step 4670... d_loss: 1.2526... g_loss: 0.7664 Elapsed: 33m33s
Epoch 1/1... Step 4680... d_loss: 1.3490... g_loss: 0.5074 Elapsed: 33m33s
Epoch 1/1... Step 4690... d_loss: 1.7529... g_loss: 0.3294 Elapsed: 33m33s
Epoch 1/1... Step 4700... d_loss: 0.6738... g_loss: 2.3789 Elapsed: 33m33s
Sample output
Epoch 1/1... Step 4710... d_loss: 1.0735... g_loss: 0.9150 Elapsed: 33m33s
Epoch 1/1... Step 4720... d_loss: 1.0368... g_loss: 1.0100 Elapsed: 33m33s
Epoch 1/1... Step 4730... d_loss: 0.6349... g_loss: 1.9571 Elapsed: 33m33s
Epoch 1/1... Step 4740... d_loss: 0.9070... g_loss: 1.1296 Elapsed: 33m33s
Epoch 1/1... Step 4750... d_loss: 0.6385... g_loss: 2.2363 Elapsed: 33m33s
Epoch 1/1... Step 4760... d_loss: 1.0982... g_loss: 0.9038 Elapsed: 34m34s
Epoch 1/1... Step 4770... d_loss: 0.9314... g_loss: 1.0538 Elapsed: 34m34s
Epoch 1/1... Step 4780... d_loss: 0.9463... g_loss: 0.9590 Elapsed: 34m34s
Epoch 1/1... Step 4790... d_loss: 0.7449... g_loss: 1.4702 Elapsed: 34m34s
Epoch 1/1... Step 4800... d_loss: 0.6258... g_loss: 1.6104 Elapsed: 34m34s
Sample output
Epoch 1/1... Step 4810... d_loss: 1.1146... g_loss: 0.7947 Elapsed: 34m34s
Epoch 1/1... Step 4820... d_loss: 1.1416... g_loss: 0.7110 Elapsed: 34m34s
Epoch 1/1... Step 4830... d_loss: 1.1654... g_loss: 0.6778 Elapsed: 34m34s
Epoch 1/1... Step 4840... d_loss: 0.4085... g_loss: 3.5233 Elapsed: 34m34s
Epoch 1/1... Step 4850... d_loss: 0.8980... g_loss: 1.1054 Elapsed: 34m34s
Epoch 1/1... Step 4860... d_loss: 0.7379... g_loss: 1.3775 Elapsed: 34m34s
Epoch 1/1... Step 4870... d_loss: 1.0946... g_loss: 0.7168 Elapsed: 34m34s
Epoch 1/1... Step 4880... d_loss: 0.5482... g_loss: 3.2831 Elapsed: 34m34s
Epoch 1/1... Step 4890... d_loss: 0.5934... g_loss: 2.4614 Elapsed: 34m34s
Epoch 1/1... Step 4900... d_loss: 0.7470... g_loss: 1.5287 Elapsed: 35m35s
Sample output
Epoch 1/1... Step 4910... d_loss: 0.6461... g_loss: 2.0858 Elapsed: 35m35s
Epoch 1/1... Step 4920... d_loss: 0.5349... g_loss: 2.5228 Elapsed: 35m35s
Epoch 1/1... Step 4930... d_loss: 0.5569... g_loss: 2.1568 Elapsed: 35m35s
Epoch 1/1... Step 4940... d_loss: 0.5233... g_loss: 2.8600 Elapsed: 35m35s
Epoch 1/1... Step 4950... d_loss: 1.3450... g_loss: 0.5591 Elapsed: 35m35s
Epoch 1/1... Step 4960... d_loss: 0.6028... g_loss: 2.1442 Elapsed: 35m35s
Epoch 1/1... Step 4970... d_loss: 1.2462... g_loss: 0.6570 Elapsed: 35m35s
Epoch 1/1... Step 4980... d_loss: 1.1323... g_loss: 0.7329 Elapsed: 35m35s
Epoch 1/1... Step 4990... d_loss: 0.8165... g_loss: 2.1815 Elapsed: 35m35s
Epoch 1/1... Step 5000... d_loss: 0.7684... g_loss: 1.7046 Elapsed: 35m35s
Sample output
Epoch 1/1... Step 5010... d_loss: 0.8330... g_loss: 1.2070 Elapsed: 35m35s
Epoch 1/1... Step 5020... d_loss: 1.1807... g_loss: 0.6597 Elapsed: 35m35s
Epoch 1/1... Step 5030... d_loss: 0.6869... g_loss: 1.5070 Elapsed: 35m35s
Epoch 1/1... Step 5040... d_loss: 0.7108... g_loss: 2.3169 Elapsed: 36m36s
Epoch 1/1... Step 5050... d_loss: 0.8126... g_loss: 1.6882 Elapsed: 36m36s
Epoch 1/1... Step 5060... d_loss: 0.6361... g_loss: 2.1025 Elapsed: 36m36s
Epoch 1/1... Step 5070... d_loss: 0.9624... g_loss: 0.8980 Elapsed: 36m36s
Epoch 1/1... Step 5080... d_loss: 1.0328... g_loss: 0.8521 Elapsed: 36m36s
Epoch 1/1... Step 5090... d_loss: 1.0860... g_loss: 0.9366 Elapsed: 36m36s
Epoch 1/1... Step 5100... d_loss: 0.7894... g_loss: 1.9543 Elapsed: 36m36s
Sample output
Epoch 1/1... Step 5110... d_loss: 1.3480... g_loss: 0.5643 Elapsed: 36m36s
Epoch 1/1... Step 5120... d_loss: 0.9976... g_loss: 1.1299 Elapsed: 36m36s
Epoch 1/1... Step 5130... d_loss: 1.2123... g_loss: 0.8514 Elapsed: 36m36s
Epoch 1/1... Step 5140... d_loss: 1.4117... g_loss: 0.6264 Elapsed: 36m36s
Epoch 1/1... Step 5150... d_loss: 0.7581... g_loss: 1.6909 Elapsed: 36m36s
Epoch 1/1... Step 5160... d_loss: 0.7449... g_loss: 1.4586 Elapsed: 36m36s
Epoch 1/1... Step 5170... d_loss: 1.4217... g_loss: 0.4535 Elapsed: 37m37s
Epoch 1/1... Step 5180... d_loss: 0.8203... g_loss: 1.4004 Elapsed: 37m37s
Epoch 1/1... Step 5190... d_loss: 0.7435... g_loss: 1.5565 Elapsed: 37m37s
Epoch 1/1... Step 5200... d_loss: 0.9904... g_loss: 1.2385 Elapsed: 37m37s
Sample output
Epoch 1/1... Step 5210... d_loss: 0.5031... g_loss: 2.9078 Elapsed: 37m37s
Epoch 1/1... Step 5220... d_loss: 1.0760... g_loss: 0.9019 Elapsed: 37m37s
Epoch 1/1... Step 5230... d_loss: 1.2043... g_loss: 0.7216 Elapsed: 37m37s
Epoch 1/1... Step 5240... d_loss: 0.7957... g_loss: 1.3129 Elapsed: 37m37s
Epoch 1/1... Step 5250... d_loss: 0.7435... g_loss: 1.3070 Elapsed: 37m37s
Epoch 1/1... Step 5260... d_loss: 1.0200... g_loss: 0.8137 Elapsed: 37m37s
Epoch 1/1... Step 5270... d_loss: 0.5981... g_loss: 1.7535 Elapsed: 37m37s
Epoch 1/1... Step 5280... d_loss: 0.5551... g_loss: 3.2323 Elapsed: 37m37s
Epoch 1/1... Step 5290... d_loss: 1.5178... g_loss: 0.4332 Elapsed: 37m37s
Epoch 1/1... Step 5300... d_loss: 0.6784... g_loss: 1.4357 Elapsed: 37m37s
Sample output
Epoch 1/1... Step 5310... d_loss: 1.3782... g_loss: 0.5071 Elapsed: 38m38s
Epoch 1/1... Step 5320... d_loss: 0.9111... g_loss: 1.1798 Elapsed: 38m38s
Epoch 1/1... Step 5330... d_loss: 0.7830... g_loss: 1.4113 Elapsed: 38m38s
Epoch 1/1... Step 5340... d_loss: 0.7952... g_loss: 1.6715 Elapsed: 38m38s
Epoch 1/1... Step 5350... d_loss: 0.6188... g_loss: 2.4927 Elapsed: 38m38s
Epoch 1/1... Step 5360... d_loss: 0.9723... g_loss: 0.8967 Elapsed: 38m38s
Epoch 1/1... Step 5370... d_loss: 0.9843... g_loss: 0.9452 Elapsed: 38m38s
Epoch 1/1... Step 5380... d_loss: 0.8482... g_loss: 1.8750 Elapsed: 38m38s
Epoch 1/1... Step 5390... d_loss: 0.8455... g_loss: 1.1995 Elapsed: 38m38s
Epoch 1/1... Step 5400... d_loss: 0.7682... g_loss: 1.3674 Elapsed: 38m38s
Sample output
Epoch 1/1... Step 5410... d_loss: 0.9919... g_loss: 0.9872 Elapsed: 38m38s
Epoch 1/1... Step 5420... d_loss: 0.8254... g_loss: 2.4785 Elapsed: 38m38s
Epoch 1/1... Step 5430... d_loss: 1.3194... g_loss: 1.7626 Elapsed: 38m38s
Epoch 1/1... Step 5440... d_loss: 0.9986... g_loss: 1.4458 Elapsed: 38m38s
Epoch 1/1... Step 5450... d_loss: 1.3005... g_loss: 0.6832 Elapsed: 39m39s
Epoch 1/1... Step 5460... d_loss: 0.8975... g_loss: 1.0800 Elapsed: 39m39s
Epoch 1/1... Step 5470... d_loss: 1.0470... g_loss: 1.1368 Elapsed: 39m39s
Epoch 1/1... Step 5480... d_loss: 0.8715... g_loss: 1.0962 Elapsed: 39m39s
Epoch 1/1... Step 5490... d_loss: 0.6603... g_loss: 2.3750 Elapsed: 39m39s
Epoch 1/1... Step 5500... d_loss: 0.8813... g_loss: 1.0861 Elapsed: 39m39s
Sample output
Epoch 1/1... Step 5510... d_loss: 0.8137... g_loss: 1.4221 Elapsed: 39m39s
Epoch 1/1... Step 5520... d_loss: 0.7252... g_loss: 1.6329 Elapsed: 39m39s
Epoch 1/1... Step 5530... d_loss: 1.1689... g_loss: 1.3167 Elapsed: 39m39s
Epoch 1/1... Step 5540... d_loss: 0.8722... g_loss: 1.1944 Elapsed: 39m39s
Epoch 1/1... Step 5550... d_loss: 0.8422... g_loss: 1.0422 Elapsed: 39m39s
Epoch 1/1... Step 5560... d_loss: 1.0845... g_loss: 1.0277 Elapsed: 39m39s
Epoch 1/1... Step 5570... d_loss: 0.7837... g_loss: 1.3601 Elapsed: 39m39s
Epoch 1/1... Step 5580... d_loss: 1.4356... g_loss: 0.5243 Elapsed: 39m39s
Epoch 1/1... Step 5590... d_loss: 0.7272... g_loss: 1.7228 Elapsed: 40m40s
Epoch 1/1... Step 5600... d_loss: 0.7697... g_loss: 1.4825 Elapsed: 40m40s
Sample output
Epoch 1/1... Step 5610... d_loss: 0.7905... g_loss: 1.4979 Elapsed: 40m40s
Epoch 1/1... Step 5620... d_loss: 1.2817... g_loss: 0.5792 Elapsed: 40m40s
Epoch 1/1... Step 5630... d_loss: 0.6096... g_loss: 2.2729 Elapsed: 40m40s
Epoch 1/1... Step 5640... d_loss: 0.6213... g_loss: 2.2319 Elapsed: 40m40s
Epoch 1/1... Step 5650... d_loss: 1.3604... g_loss: 0.5432 Elapsed: 40m40s
Epoch 1/1... Step 5660... d_loss: 0.6561... g_loss: 1.5630 Elapsed: 40m40s
Epoch 1/1... Step 5670... d_loss: 0.5465... g_loss: 3.4426 Elapsed: 40m40s
Epoch 1/1... Step 5680... d_loss: 0.6864... g_loss: 1.6223 Elapsed: 40m40s
Epoch 1/1... Step 5690... d_loss: 0.9942... g_loss: 2.0496 Elapsed: 40m40s
Epoch 1/1... Step 5700... d_loss: 0.4622... g_loss: 3.3391 Elapsed: 40m40s
Sample output
Epoch 1/1... Step 5710... d_loss: 0.8630... g_loss: 1.5597 Elapsed: 40m40s
Epoch 1/1... Step 5720... d_loss: 0.8325... g_loss: 1.6003 Elapsed: 40m40s
Epoch 1/1... Step 5730... d_loss: 1.3837... g_loss: 0.5533 Elapsed: 41m41s
Epoch 1/1... Step 5740... d_loss: 0.6090... g_loss: 2.0709 Elapsed: 41m41s
Epoch 1/1... Step 5750... d_loss: 0.5996... g_loss: 2.4295 Elapsed: 41m41s
Epoch 1/1... Step 5760... d_loss: 0.9034... g_loss: 1.5891 Elapsed: 41m41s
Epoch 1/1... Step 5770... d_loss: 0.9624... g_loss: 1.1436 Elapsed: 41m41s
Epoch 1/1... Step 5780... d_loss: 0.6466... g_loss: 2.6868 Elapsed: 41m41s
Epoch 1/1... Step 5790... d_loss: 0.8154... g_loss: 1.3502 Elapsed: 41m41s
Epoch 1/1... Step 5800... d_loss: 0.7420... g_loss: 1.4473 Elapsed: 41m41s
Sample output
Epoch 1/1... Step 5810... d_loss: 0.5777... g_loss: 2.1606 Elapsed: 41m41s
Epoch 1/1... Step 5820... d_loss: 1.0927... g_loss: 0.8154 Elapsed: 41m41s
Epoch 1/1... Step 5830... d_loss: 1.0468... g_loss: 0.8725 Elapsed: 41m41s
Epoch 1/1... Step 5840... d_loss: 0.4557... g_loss: 2.7833 Elapsed: 41m41s
Epoch 1/1... Step 5850... d_loss: 0.6487... g_loss: 1.8287 Elapsed: 41m41s
Epoch 1/1... Step 5860... d_loss: 0.5678... g_loss: 2.1444 Elapsed: 41m41s
Epoch 1/1... Step 5870... d_loss: 0.8298... g_loss: 2.6910 Elapsed: 42m42s
Epoch 1/1... Step 5880... d_loss: 1.2964... g_loss: 0.6379 Elapsed: 42m42s
Epoch 1/1... Step 5890... d_loss: 1.1578... g_loss: 0.7200 Elapsed: 42m42s
Epoch 1/1... Step 5900... d_loss: 0.7121... g_loss: 2.0530 Elapsed: 42m42s
Sample output
Epoch 1/1... Step 5910... d_loss: 0.8259... g_loss: 1.8041 Elapsed: 42m42s
Epoch 1/1... Step 5920... d_loss: 0.9852... g_loss: 1.5386 Elapsed: 42m42s
Epoch 1/1... Step 5930... d_loss: 1.6379... g_loss: 0.4119 Elapsed: 42m42s
Epoch 1/1... Step 5940... d_loss: 0.5282... g_loss: 2.1847 Elapsed: 42m42s
Epoch 1/1... Step 5950... d_loss: 0.7071... g_loss: 1.4742 Elapsed: 42m42s
Epoch 1/1... Step 5960... d_loss: 1.0562... g_loss: 0.8294 Elapsed: 42m42s
Epoch 1/1... Step 5970... d_loss: 0.5956... g_loss: 2.9307 Elapsed: 42m42s
Epoch 1/1... Step 5980... d_loss: 0.7090... g_loss: 2.1966 Elapsed: 42m42s
Epoch 1/1... Step 5990... d_loss: 1.1662... g_loss: 0.7099 Elapsed: 42m42s
Epoch 1/1... Step 6000... d_loss: 1.8439... g_loss: 0.2853 Elapsed: 42m42s
Sample output
Epoch 1/1... Step 6010... d_loss: 0.9013... g_loss: 1.0069 Elapsed: 43m43s
Epoch 1/1... Step 6020... d_loss: 0.5902... g_loss: 3.3088 Elapsed: 43m43s
Epoch 1/1... Step 6030... d_loss: 0.7051... g_loss: 1.7456 Elapsed: 43m43s
Epoch 1/1... Step 6040... d_loss: 0.7074... g_loss: 1.5660 Elapsed: 43m43s
Epoch 1/1... Step 6050... d_loss: 0.8383... g_loss: 1.6533 Elapsed: 43m43s
Epoch 1/1... Step 6060... d_loss: 1.1937... g_loss: 0.7563 Elapsed: 43m43s
Epoch 1/1... Step 6070... d_loss: 0.5809... g_loss: 2.7858 Elapsed: 43m43s
Epoch 1/1... Step 6080... d_loss: 1.1649... g_loss: 0.7380 Elapsed: 43m43s
Epoch 1/1... Step 6090... d_loss: 1.0119... g_loss: 1.0086 Elapsed: 43m43s
Epoch 1/1... Step 6100... d_loss: 1.1396... g_loss: 0.7570 Elapsed: 43m43s
Sample output
Epoch 1/1... Step 6110... d_loss: 0.8057... g_loss: 1.4185 Elapsed: 43m43s
Epoch 1/1... Step 6120... d_loss: 0.4606... g_loss: 3.6737 Elapsed: 43m43s
Epoch 1/1... Step 6130... d_loss: 0.6706... g_loss: 2.1072 Elapsed: 43m43s
Epoch 1/1... Step 6140... d_loss: 0.6309... g_loss: 1.7040 Elapsed: 44m44s
Epoch 1/1... Step 6150... d_loss: 0.6769... g_loss: 1.4646 Elapsed: 44m44s
Epoch 1/1... Step 6160... d_loss: 0.6721... g_loss: 1.9297 Elapsed: 44m44s
Epoch 1/1... Step 6170... d_loss: 1.7554... g_loss: 0.3601 Elapsed: 44m44s
Epoch 1/1... Step 6180... d_loss: 0.7716... g_loss: 1.2323 Elapsed: 44m44s
Epoch 1/1... Step 6190... d_loss: 0.8318... g_loss: 1.1810 Elapsed: 44m44s
Epoch 1/1... Step 6200... d_loss: 0.5685... g_loss: 1.9979 Elapsed: 44m44s
Sample output
Epoch 1/1... Step 6210... d_loss: 0.7170... g_loss: 1.6751 Elapsed: 44m44s
Epoch 1/1... Step 6220... d_loss: 1.3179... g_loss: 0.6105 Elapsed: 44m44s
Epoch 1/1... Step 6230... d_loss: 0.5022... g_loss: 2.5550 Elapsed: 44m44s
Epoch 1/1... Step 6240... d_loss: 0.8285... g_loss: 1.0948 Elapsed: 44m44s
Epoch 1/1... Step 6250... d_loss: 1.2566... g_loss: 0.5719 Elapsed: 44m44s
Epoch 1/1... Step 6260... d_loss: 0.8859... g_loss: 1.1082 Elapsed: 44m44s
Epoch 1/1... Step 6270... d_loss: 0.6947... g_loss: 1.6124 Elapsed: 44m44s
Epoch 1/1... Step 6280... d_loss: 0.5169... g_loss: 2.2281 Elapsed: 45m45s
Epoch 1/1... Step 6290... d_loss: 1.7965... g_loss: 0.3191 Elapsed: 45m45s
Epoch 1/1... Step 6300... d_loss: 1.1231... g_loss: 0.7369 Elapsed: 45m45s
Sample output
Epoch 1/1... Step 6310... d_loss: 0.7224... g_loss: 1.4310 Elapsed: 45m45s
Epoch 1/1... Step 6320... d_loss: 0.7565... g_loss: 1.7754 Elapsed: 45m45s
Epoch 1/1... Step 6330... d_loss: 0.8228... g_loss: 1.3325 Elapsed: 45m45s
Training done

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.


In [ ]: