In [1]:
%matplotlib inline
In [2]:
# subset of http://scikit-learn.org/stable/_downloads/plot_lle_digits.py
# see Kyle Kastner at https://youtu.be/r-1XJBHot58?t=1335
# Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Gael Varoquaux
# License: BSD 3 clause (C) INRIA 2011
import matplotlib
matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) # make plot larger in notebook
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from matplotlib import offsetbox
import numpy as np
digits = load_digits(n_class=6)
X = digits.data
y = digits.target
n_img_per_row = 20
img = np.zeros((10 * n_img_per_row , 10 * n_img_per_row))
for i in range(n_img_per_row):
ix = 10 * i + 1
for j in range(n_img_per_row):
iy = 10 * j + 1
img[ix:ix +8 , iy:iy+8] = X[ i * n_img_per_row +j ].reshape((8,8))
plt.imshow(img,cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.title('A selection from the 64-dimensional digits datast')
#----------------------------------------------------------------------
# Scale and visualize the embedding vectors
def plot_embedding(X, title=None):
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)
plt.figure()
ax = plt.subplot(111)
for i in range(X.shape[0]):
plt.text(X[i, 0], X[i, 1], str(digits.target[i]),
color=plt.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
if hasattr(offsetbox, 'AnnotationBbox'):
# only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(digits.data.shape[0]):
dist = np.sum((X[i] - shown_images) ** 2, 1)
if np.min(dist) < 4e-3:
# don't show points that are too close
continue
shown_images = np.r_[shown_images, [X[i]]]
imagebox = offsetbox.AnnotationBbox(
offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
X[i])
ax.add_artist(imagebox)
plt.xticks([]), plt.yticks([])
if title is not None:
plt.title(title)
plt.show()
In [3]:
X_tsne = TSNE(n_components=2, init="pca", random_state=1999).fit_transform(X)
plot_embedding(X_tsne, title="TSNE_embedding")
In [4]:
X_pca = PCA(n_components=2).fit_transform(X)
plot_embedding(X_pca, title="PCA_embedding")
In [ ]: