Project Euler: Problem 9

https://projecteuler.net/problem=9

A Pythagorean triplet is a set of three natural numbers, $a < b < c$, for which,

$$a^2 + b^2 = c^2$$

For example, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.

There exists exactly one Pythagorean triplet for which $a + b + c = 1000$. Find the product abc.


In [36]:
def euler_trip():
    for z in range(0,100) and x in range(0, z-1): #setting parameters of problem
        y = (z**2 - x**2)**.5    #defining y(b)
        if x + y + z == 1000 and x<y:     # condition established by the problem
            print(x * y * z)            #product of variables with given parameters and conditions

In [18]:
# This cell will be used for grading, leave it at the end of the notebook.

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: