In [5]:
import pandas
import numpy as np
import pandas as pd
#from __future__ import print_function
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
%matplotlib inline
import seaborn as sns
In [6]:
df = pd.read_csv("hUSCensus1990raw50K.csv.bz2",compression = "bz2")
In [7]:
df_demo = pd.DataFrame()
df_demo["AGE"] = df[["AGE"]].copy()
df_demo["INCOME"] = df[["INCOME" + str(i) for i in range(1,8)]].sum(axis = 1)
df_demo["YEARSCH"] = df[["YEARSCH"]].copy()
df_demo["ENGLISH"] = df[["ENGLISH"]].copy()
df_demo["FERTIL"] = df[["FERTIL"]].copy()
df_demo["YRSSERV"] = df[["YRSSERV"]].copy()
df_demo = pd.get_dummies(df_demo, columns = ["ENGLISH", "FERTIL" ])
In [8]:
X = df_demo.values[np.random.choice(df_demo.values.shape[0], 10000)]
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_db = sc.fit_transform(X)
n_clusters = 3
labels = KMeans(n_clusters = n_clusters).fit_predict(X_db)
print('Number of clusters: %d' % n_clusters)
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X_db, labels))
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = 'k'
class_member_mask = (labels == k)
xy = X[class_member_mask]
plt.scatter(xy[:, 0], xy[:, 1], c = col, edgecolor='k')
xy = X[class_member_mask]
plt.scatter(xy[:, 0], xy[:, 1], c = col, edgecolor='k')
In [ ]: