In [8]:
from PIL import Image
from utils import *
from keras import backend as K
dim_ordering = K.image_dim_ordering()
filepath = '/home/sridhar/code/SDCND/ReferencePython/simulator_50hz/simulator-linux/KeyBoardRecording/t1_center/IMG/center_2016_12_17_02_53_09_117.jpg'
save_to_dir = '/home/sridhar/code/SDCND/ReferencePython/CarND-BehavioralCloning-P3/sample'
img = Image.open(filepath)
img = img.convert('RGB')
theta = np.pi / 180 * 10
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
                            [np.sin(theta), np.cos(theta), 0],
                            [0, 0, 1]])
img_row_index = 0
img_col_index = 1
img_channel_index = 2
fill_mode = 'nearest'
cval = 0
x = img_to_array(img, dim_ordering=dim_ordering)
fname = 'input.jpeg'
img.save(os.path.join(save_to_dir, fname))
h, w = x.shape[img_row_index], x.shape[img_col_index]
#transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix)
transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
x = apply_transform(x, transform_matrix, img_channel_index,
                            fill_mode=fill_mode, cval=cval)
img = array_to_img(x, dim_ordering, scale=True)
fname = 'rotation.jpeg'
img.save(os.path.join(save_to_dir, fname))

In [15]:
filepath = '/home/sridhar/code/SDCND/ReferencePython/simulator_50hz/simulator-linux/KeyBoardRecording/t1_center/IMG/center_2016_12_17_02_53_09_117.jpg'
save_to_dir = '/home/sridhar/code/SDCND/ReferencePython/CarND-BehavioralCloning-P3/sample'
img = Image.open(filepath)
img = img.convert('RGB')
x = img_to_array(img, dim_ordering=dim_ordering)
shift_val = .1
tx = 0
ty =  shift_val * x.shape[img_col_index]
translation_matrix = np.array([[1, 0, tx],
                               [0, 1, ty],
                               [0, 0, 1]])
h, w = x.shape[img_row_index], x.shape[img_col_index]
transform_matrix = transform_matrix_offset_center(translation_matrix, h, w)
x = apply_transform(x, transform_matrix, img_channel_index,
                            fill_mode=fill_mode, cval=cval)
img = array_to_img(x, dim_ordering, scale=True)
fname = 'trans.jpeg'
img.save(os.path.join(save_to_dir, fname))

In [18]:
filepath = '/home/sridhar/code/SDCND/ReferencePython/simulator_50hz/simulator-linux/KeyBoardRecording/t1_center/IMG/center_2016_12_17_02_53_09_117.jpg'
save_to_dir = '/home/sridhar/code/SDCND/ReferencePython/CarND-BehavioralCloning-P3/sample'
img = Image.open(filepath)
img = img.convert('RGB')
x = img_to_array(img, dim_ordering=dim_ordering)
x = random_channel_shift(x, 15, img_channel_index)
img = array_to_img(x, dim_ordering, scale=True)
fname = 'CV.jpeg'
img.save(os.path.join(save_to_dir, fname))

In [19]:
filepath = '/home/sridhar/code/SDCND/ReferencePython/simulator_50hz/simulator-linux/KeyBoardRecording/t1_center/IMG/center_2016_12_17_02_53_09_117.jpg'
save_to_dir = '/home/sridhar/code/SDCND/ReferencePython/CarND-BehavioralCloning-P3/sample'
img = Image.open(filepath)
img = img.convert('RGB')
x = img_to_array(img, dim_ordering=dim_ordering)
x = flip_axis(x, img_col_index)
img = array_to_img(x, dim_ordering, scale=True)
fname = 'flip.jpeg'
img.save(os.path.join(save_to_dir, fname))

In [21]:
filepath = '/home/sridhar/code/SDCND/ReferencePython/simulator_50hz/simulator-linux/KeyBoardRecording/t1_center/IMG/center_2016_12_17_02_53_09_117.jpg'
save_to_dir = '/home/sridhar/code/SDCND/ReferencePython/CarND-BehavioralCloning-P3/sample'
img = Image.open(filepath)
img = img.convert('RGB')
x = img_to_array(img, dim_ordering=dim_ordering)
x = exposure.adjust_gamma(x, 2.0)
img = array_to_img(x, dim_ordering, scale=True)
fname = 'gm2.0.jpeg'
img.save(os.path.join(save_to_dir, fname))

In [ ]: