In [40]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns

In [41]:
import antipackage
import github.ellisonbg.misc.vizarray as va

In [42]:
import numpy as np

In [43]:
data = [0, 2, 4, 6]
a = np.array(data)

In [44]:
type(a)


Out[44]:
numpy.ndarray

In [45]:
a


Out[45]:
array([0, 2, 4, 6])

In [46]:
va.vizarray(a)


Out[46]:

In [47]:
a.shape


Out[47]:
(4,)

In [48]:
a.ndim


Out[48]:
1

In [49]:
a.size


Out[49]:
4

In [50]:
a.nbytes


Out[50]:
32

In [51]:
a.dtype


Out[51]:
dtype('int64')

In [57]:
data = [[0.0,2.0,4.0,6.0],[1.0,3.0,5.0,7.0]]
b = np.array(data)

In [58]:
b


Out[58]:
array([[ 0.,  2.,  4.,  6.],
       [ 1.,  3.,  5.,  7.]])

In [59]:
va.vizarray(b)


Out[59]:

In [60]:
b.shape, b.ndim, b.size, b.nbytes


Out[60]:
((2, 4), 2, 8, 64)

In [61]:
c = np.arange(0.0, 10.0, 1.0)
c


Out[61]:
array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])

In [62]:
e = np.linspace(0.0, 5.0, 11)
e


Out[62]:
array([ 0. ,  0.5,  1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ,  4.5,  5. ])

In [63]:
np.empty


Out[63]:
<function numpy.core.multiarray.empty>

In [64]:
np.zeros((3, 3))


Out[64]:
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])

In [65]:
np.ones((3, 3))


Out[65]:
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])

In [66]:
a = np.array([0, 1, 2, 3])

In [67]:
a, a.dtype


Out[67]:
(array([0, 1, 2, 3]), dtype('int64'))

In [68]:
b = np.zeros((2, 2), dtype = np.complex64)

In [69]:
c = np.arange(0, 10, 2, dtype = np.float)
c


Out[69]:
array([ 0.,  2.,  4.,  6.,  8.])

In [70]:
d = c.astype(dtype = np.int)

In [71]:
np.float*?

In [72]:
a = np.empty((3,3))
a.fill(0.1)
a


Out[72]:
array([[ 0.1,  0.1,  0.1],
       [ 0.1,  0.1,  0.1],
       [ 0.1,  0.1,  0.1]])

In [73]:
b = np.ones((3,3))
b


Out[73]:
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])

In [75]:
a + b


Out[75]:
array([[ 1.1,  1.1,  1.1],
       [ 1.1,  1.1,  1.1],
       [ 1.1,  1.1,  1.1]])

In [76]:
b / a


Out[76]:
array([[ 10.,  10.,  10.],
       [ 10.,  10.,  10.],
       [ 10.,  10.,  10.]])

In [78]:
a ** 2


Out[78]:
array([[ 0.01,  0.01,  0.01],
       [ 0.01,  0.01,  0.01],
       [ 0.01,  0.01,  0.01]])

In [79]:
np.pi * b


Out[79]:
array([[ 3.14159265,  3.14159265,  3.14159265],
       [ 3.14159265,  3.14159265,  3.14159265],
       [ 3.14159265,  3.14159265,  3.14159265]])

In [80]:
a = np.random.rand(10, 10)

In [81]:
va.enable


Out[81]:
<function github.ellisonbg.misc.vizarray.enable>

In [82]:
a


Out[82]:
array([[ 0.06042759,  0.82013966,  0.20923969,  0.82298253,  0.39777137,
         0.16697057,  0.04840525,  0.23235343,  0.05670063,  0.89884396],
       [ 0.12870561,  0.9150747 ,  0.51818695,  0.31086148,  0.53228308,
         0.63529253,  0.9676085 ,  0.03045213,  0.65915349,  0.40700536],
       [ 0.8439568 ,  0.94820609,  0.3254754 ,  0.65060662,  0.57249243,
         0.81023562,  0.90328015,  0.55998516,  0.53926775,  0.42595367],
       [ 0.17024377,  0.64445812,  0.05133403,  0.70428481,  0.73077548,
         0.92033752,  0.39276949,  0.23240558,  0.25952686,  0.21507777],
       [ 0.0811034 ,  0.20740161,  0.33901776,  0.95946552,  0.72580022,
         0.27755957,  0.79775125,  0.78949877,  0.40720512,  0.60632164],
       [ 0.2554695 ,  0.16763672,  0.2923767 ,  0.5206425 ,  0.23372713,
         0.89713344,  0.76508931,  0.07417076,  0.72614281,  0.54217027],
       [ 0.34992143,  0.94686597,  0.61246075,  0.09645634,  0.06365613,
         0.63373767,  0.49652203,  0.31006348,  0.57712143,  0.22748162],
       [ 0.04810715,  0.44407407,  0.77675673,  0.81068316,  0.83242107,
         0.54330581,  0.1655478 ,  0.89636253,  0.15001998,  0.77406012],
       [ 0.04717436,  0.38467088,  0.00454725,  0.45303743,  0.6681668 ,
         0.51275731,  0.46619851,  0.26924213,  0.61938163,  0.37868359],
       [ 0.5604671 ,  0.91342881,  0.61635751,  0.21843716,  0.00197656,
         0.70564673,  0.6618094 ,  0.55786198,  0.58353724,  0.36190531]])

In [83]:
a[0,0]


Out[83]:
0.060427589208566168

In [84]:
a[-1, -1] == a[9, 9]


Out[84]:
True

In [86]:
a[:,0]


Out[86]:
array([ 0.06042759,  0.12870561,  0.8439568 ,  0.17024377,  0.0811034 ,
        0.2554695 ,  0.34992143,  0.04810715,  0.04717436,  0.5604671 ])

In [87]:
a[-1, :]


Out[87]:
array([ 0.5604671 ,  0.91342881,  0.61635751,  0.21843716,  0.00197656,
        0.70564673,  0.6618094 ,  0.55786198,  0.58353724,  0.36190531])

In [89]:
a[0:2, 0:2]


Out[89]:
array([[ 0.06042759,  0.82013966],
       [ 0.12870561,  0.9150747 ]])

In [90]:
a[0:5, 0:5] = 1.0

In [91]:
a


Out[91]:
array([[ 1.        ,  1.        ,  1.        ,  1.        ,  1.        ,
         0.16697057,  0.04840525,  0.23235343,  0.05670063,  0.89884396],
       [ 1.        ,  1.        ,  1.        ,  1.        ,  1.        ,
         0.63529253,  0.9676085 ,  0.03045213,  0.65915349,  0.40700536],
       [ 1.        ,  1.        ,  1.        ,  1.        ,  1.        ,
         0.81023562,  0.90328015,  0.55998516,  0.53926775,  0.42595367],
       [ 1.        ,  1.        ,  1.        ,  1.        ,  1.        ,
         0.92033752,  0.39276949,  0.23240558,  0.25952686,  0.21507777],
       [ 1.        ,  1.        ,  1.        ,  1.        ,  1.        ,
         0.27755957,  0.79775125,  0.78949877,  0.40720512,  0.60632164],
       [ 0.2554695 ,  0.16763672,  0.2923767 ,  0.5206425 ,  0.23372713,
         0.89713344,  0.76508931,  0.07417076,  0.72614281,  0.54217027],
       [ 0.34992143,  0.94686597,  0.61246075,  0.09645634,  0.06365613,
         0.63373767,  0.49652203,  0.31006348,  0.57712143,  0.22748162],
       [ 0.04810715,  0.44407407,  0.77675673,  0.81068316,  0.83242107,
         0.54330581,  0.1655478 ,  0.89636253,  0.15001998,  0.77406012],
       [ 0.04717436,  0.38467088,  0.00454725,  0.45303743,  0.6681668 ,
         0.51275731,  0.46619851,  0.26924213,  0.61938163,  0.37868359],
       [ 0.5604671 ,  0.91342881,  0.61635751,  0.21843716,  0.00197656,
         0.70564673,  0.6618094 ,  0.55786198,  0.58353724,  0.36190531]])

In [93]:
va.disable()

In [97]:
ages = np.array([23, 56,67, 89, 23, 56, 27, 12, 8, 72])
genders = np.array(['m', 'm', 'f', 'f', 'm', 'f', 'm' ,'m', 'm', 'f'])

In [98]:
ages > 30


Out[98]:
array([False,  True,  True,  True, False,  True, False, False, False,  True], dtype=bool)

In [99]:
genders == 'm'


Out[99]:
array([ True,  True, False, False,  True, False,  True,  True,  True, False], dtype=bool)

In [100]:
(ages > 10) & (ages < 50)


Out[100]:
array([ True, False, False, False,  True, False,  True,  True, False, False], dtype=bool)

In [101]:
mask = (genders == 'f')
ages[mask]


Out[101]:
array([67, 89, 56, 72])

In [102]:
ages[ages>30]


Out[102]:
array([56, 67, 89, 56, 72])

In [104]:
va.enable()

In [105]:
a = np.random.rand(3,4)

In [106]:
a


Out[106]:

In [107]:
a.T


Out[107]:

In [ ]:
a.reshape(6,2)

In [ ]:
a.ravel()

In [ ]:
va.disable

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: