In [7]:
N =100
promCitas = 3
import matplotlib
%matplotlib inline
import networkx as nx
import numpy as np
G = nx.Graph()
for i in range (-5, 0):
    G.add_node(i)
nx.draw_networkx(G)



In [9]:
for nuevoNodo in range(N):
    print(G.degree())
    degree = G.degree()
    nodes = G.nodes()
    edges = G.edges()
    num_edges = len(G.edges())
    if num_edges == 0:
        for _ in range(np.random.poisson(3)): # _ no interesa saber como se llama, hace el papel de i,j,....
            ran = np.random.randint(len(nodes))
            for j,n in enumerate(nodes):
                if j == ran:
                    G.add_edge(nuevoNodo, n)
    else:
        grado_total = sum(degree.values())
        for _ in range(np.random.poisson(3)):
            ran = np.random.randint(grado_total)
            n= None
            for n,d in degree.items():
                ran -= d
                if ran < 0:
                    print(n)
                    break


{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
-4
-4
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
0
-4
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
-2
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-4
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
-4
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-4
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-4
0
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
-2
0
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
-2
0
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-4
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
-4
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
-2
0
0
0
0
-4
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-4
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
-4
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-2
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-2
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
-4
-4
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-2
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
-2
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
-4
-2
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-4
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
0
-4
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-4
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
-2
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
-4
-2
-4
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
0
0
-2
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4
0
0
-4
-2
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-2
-2
0
{-5: 0, -4: 1, -3: 0, -2: 1, -1: 0, 0: 2}
-4

In [ ]:


In [ ]: