In [13]:
#greek symbols (must be imported first)
from sympy.abc import*
from sympy import *
from sympy import MatrixSymbol, Identity
init_printing(use_latex=True) #For good look equations
x1 = Symbol('x_1')
x2 = Symbol('x_2')
In [14]:
A1 = [x1**3, 0]
A2 = [sin (x1), x2]
In [15]:
A = Matrix((A1,A2))
In [16]:
A
Out[16]:
In [17]:
A**-1
Out[17]:
In [32]:
A1 = x1**3
A2 = sin (x1)+ x2
X = Matrix([A1,A2])
X
Out[32]:
In [34]:
Y = Matrix([x1,x2])
J = X.jacobian(Y)
J
Out[34]:
In [35]:
J**-1
Out[35]:
In [40]:
y = Symbol('y')
function = y
In [41]:
#(diferencial dy, desde 0, a y)
integrate(function, (y,0,y))
Out[41]:
In [51]:
f, g = symbols('f g', cls=Function)
In [52]:
f(x).diff(x)
Out[52]:
In [53]:
cos(f(t)).diff(t,t)
Out[53]:
In [135]:
y1d,y1dd,y1ddd = symbols('\dot{y}_1 \ddot{y}_1 \dddot{y}_1 ',cls=Function)
y2d,y3dd,y3ddd = symbols('\dot{y}_2 \ddot{y}_2 \dddot{y}_2 ',cls=Function)
x1,x2,x3,x4,x5,x6 = symbols('x_1 x_2 x_3 x_4 x_5 x_6',cls=Function)
v1,v2,v3,v4 = symbols('v_1 v_2 v_3 v_4',cls=Function)
z1,z2,z3,z4 = symbols('z_1 z_2 z_3 z_4',cls=Function)
In [136]:
u1= y1d(t)*tan(x3(t))
u1
Out[136]:
In [137]:
simplify(u1.diff(t))
Out[137]:
In [138]:
bx = Matrix(([0],[v1(t)*tan(x3(t))]))
bx
Out[138]:
In [142]:
Dx = Matrix(([cos(x3(t)), 0],[0, z1(t)/cos(x3(t))**2]))
Dx
Out[142]:
In [174]:
V = Matrix(([z1(t)],[v2(t)]))
V
Out[174]:
In [177]:
def sfeed(Dx, bx, V):
betax = Dx**-1*V
alfax = Dx**-1*bx
return simplify(alfax + betax)
In [180]:
sfeed(Dx, bx, V)
Out[180]:
In [179]:
Out[179]:
In [ ]: