In [1]:
from general_wheel import*
from mobile_ss import*
In [2]:
b1 = Symbol('\\beta _{1s}')
L = Symbol('L')
s1 = general_wheel(v_alpha = -pi/2, v_beta = b1, v_gamma = 0, d = 0, L= L)
s1.exp
Out[2]:
In [3]:
b2 = Symbol('\\beta _{2s}')
s2 = general_wheel(v_alpha = +pi/2, v_beta = b2, v_gamma = 0, d = 0, L= L)
s2.exp
Out[3]:
In [4]:
b3 = Symbol('\\beta _{3c}')
a = Symbol('a')
d = Symbol('d')
c3 = general_wheel(v_alpha = pi, v_beta = b3, v_gamma = 0, d = d, L= a)
c3.exp
Out[4]:
In [5]:
mob = mobile_ss();
# no denominator in Sigma[0,0]
mob.conf_kinematic_model([s1,s2,c3],['s','s','c'],simply=2)
#The last 4 rows can be symplified
Out[5]:
In [6]:
mob.C1_star
Out[6]:
In [7]:
mob.C1_star[0,:]*cos(b2)
Out[7]:
In [8]:
mob.C1_star[1,:]*cos(b1)
Out[8]:
In [9]:
c2 = simplify(mob.C1_star[0,:]*cos(b2) + mob.C1_star[1,:]*cos(b1))
c2
Out[9]:
In [10]:
C1_star = mob.C1_star[0,:].col_join(c2)
C1_star
Out[10]:
In [11]:
mob.Sigma
Out[11]:
In [12]:
mob.E
Out[12]:
In [13]:
mob.D
Out[13]:
In [14]:
mob.C1_star
Out[14]:
In [21]:
sin(b1+pi/2)
Out[21]: