In [3]:
from general_wheel import*
from mobile_ss import*

In [4]:
f1 = general_wheel(v_alpha = -pi/2, v_beta = 0, v_gamma =  pi/2, d = 0)
f1.exp


New mobile robot parameterization
Out[4]:
$$\left[\begin{matrix}- r\\0\end{matrix}\right] \dot{\phi} + \left[\begin{matrix}1 & 0 & L\\0 & 1 & 0\end{matrix}\right] {R(\theta)} \dot{\xi}$$

In [5]:
f2 = general_wheel(v_alpha = pi/2, v_beta = 0, v_gamma =  -pi/2, d = 0)
f2.exp


New mobile robot parameterization
Out[5]:
$$\left[\begin{matrix}- r\\0\end{matrix}\right] \dot{\phi} + \left[\begin{matrix}1 & 0 & - L\\0 & 1 & 0\end{matrix}\right] {R(\theta)} \dot{\xi}$$

In [6]:
a = Symbol('a')
b3s = Symbol('\\beta _{3s}')

s3 = general_wheel(v_alpha = 0, v_beta = b3s, v_gamma =  0, d = 0, L=a)
s3.exp


New mobile robot parameterization
Out[6]:
$$\left[\begin{matrix}- r\\0\end{matrix}\right] \dot{\phi} + \left[\begin{matrix}\cos{\left (\beta _{{3s}} \right )} & \sin{\left (\beta _{{3s}} \right )} & a \sin{\left (\beta _{{3s}} \right )}\\- \sin{\left (\beta _{{3s}} \right )} & \cos{\left (\beta _{{3s}} \right )} & a \cos{\left (\beta _{{3s}} \right )}\end{matrix}\right] {R(\theta)} \dot{\xi}$$

In [7]:
mob = mobile_ss();   
mob.conf_kinematic_model([f1,f2,s3],['f','f','s'])


New mobile robot instance:
Out[7]:
$$\left[\begin{matrix}\cos{\left (\theta \right )} & 0\\\sin{\left (\theta \right )} & 0\\\frac{1}{a} \tan{\left (\beta _{{3s}} \right )} & 0\\0 & 1\\\frac{1}{a r} \left(L \tan{\left (\beta _{{3s}} \right )} + a\right) & 0\\\frac{1}{a r} \left(- L \tan{\left (\beta _{{3s}} \right )} + a\right) & 0\\\frac{1}{r \cos{\left (\beta _{{3s}} \right )}} & 0\end{matrix}\right]$$

In [ ]: