In [46]:
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

In [47]:
df = pd.read_csv('ScoreBoardFinal.csv')
print df.head(5)


    MId Home_Team  Home_Team_Goals  Away_Team_Goals Away_Team Home_Poss  \
0  9601       CAR                1                2       CHE      36.8   
1  9602       FUL                2                2       CRY      66.1   
2  9603       HUL                0                2       EVE        43   
3  9604       LIV                2                1      NUFC      66.2   
4  9605      MCFC                2                0       WHU      68.1   

  Away_Poss Home_ShotsT Away_ShotsT Home_Shots   ...    HTP      HTR     HTAR  \
0      63.2           3           7         10   ...     14  775.406  151.256   
1      33.9           5           6         15   ...     14  793.834  182.616   
2        57           3           4         12   ...     14  792.189  216.189   
3      33.8           5           2         13   ...     14  884.043  269.651   
4      31.9           7           0         28   ...     14  912.543  155.313   

      HTMR     HTDR ATP      ATR     ATAR     ATMR     ATDR  
0  269.512  354.638  14  883.673  166.000  315.499  402.174  
1  210.218  401.000  14  790.224  144.288  287.936  358.000  
2  219.000  357.000  14  862.968  173.566  293.402  396.000  
3  220.392  394.000  14  827.956   84.175  294.260  449.521  
4  350.230  407.000  14  808.489  129.325  315.164  364.000  

[5 rows x 33 columns]

In [51]:
df_copy = df.loc[df['Home_ShotsT'] != "XX-XX-"]
print df_copy['Away_Shots']


0       28
1       15
2       11
3        8
4        3
5       14
6        9
7        8
8        4
9       14
10       5
11      13
12       2
13      26
14       6
15      11
16      18
17       8
18       8
19      16
20      10
21      17
22      12
23       8
24      16
25      11
26       6
27       9
28       8
29      16
        ..
1110    15
1111    16
1112    14
1113    15
1114    11
1115    19
1116     6
1117    20
1118    15
1119     7
1120    13
1121    10
1122    20
1123    18
1124     4
1125    15
1126     6
1127    10
1128    10
1129     9
1130    20
1131     8
1132     8
1133    14
1134    17
1135     7
1136    11
1137    11
1138    11
1139     9
Name: Away_Shots, dtype: object

In [52]:
#plt.figure(figsize=(10,10))

df_poss = df_copy[(df_copy['Home_Team']=="MUFC") | (df_copy["Home_Team"] == "Man Utd")]
#print df_poss
df_poss = df_poss[['MId','Home_Team_Goals','Home_Tackles','Away_Tackles','Away_Shots','Away_ShotsT','Away_Team','Home_Shots','Home_Poss','Away_Poss','Home_ShotsT','Home_Clearances','Away','HTR','HTAR','HTMR','HTDR','ATR','ATAR','ATMR','ATDR']]
df_poss['index'] = range(1, len(df_poss) + 1)
df_poss[['MId','Home_Team_Goals','Home_Shots','Home_ShotsT','Home_Tackles','Away_Tackles','Away_Shots','Away_ShotsT','HTR','HTAR','HTMR','HTDR','ATR','ATAR','ATMR','ATDR']] = df_poss[['MId','Home_Team_Goals','Home_Shots','Home_ShotsT','Home_Tackles','Away_Tackles','Away_Shots','Away_ShotsT','HTR','HTAR','HTMR','HTDR','ATR','ATAR','ATMR','ATDR']].astype(float)
print df_poss


---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-52-a8d1ed53133f> in <module>()
      3 df_poss = df_copy[(df_copy['Home_Team']=="MUFC") | (df_copy["Home_Team"] == "Man Utd")]
      4 #print df_poss
----> 5 df_poss = df_poss[['MId','Home_Team_Goals','Home_Tackles','Away_Tackles','Away_Shots','Away_ShotsT','Away_Team','Home_Shots','Home_Poss','Away_Poss','Home_ShotsT','Home_Clearances','Away','HTR','HTAR','HTMR','HTDR','ATR','ATAR','ATMR','ATDR']]
      6 df_poss['index'] = range(1, len(df_poss) + 1)
      7 df_poss[['MId','Home_Team_Goals','Home_Shots','Home_ShotsT','Home_Tackles','Away_Tackles','Away_Shots','Away_ShotsT','HTR','HTAR','HTMR','HTDR','ATR','ATAR','ATMR','ATDR']] = df_poss[['MId','Home_Team_Goals','Home_Shots','Home_ShotsT','Home_Tackles','Away_Tackles','Away_Shots','Away_ShotsT','HTR','HTAR','HTMR','HTDR','ATR','ATAR','ATMR','ATDR']].astype(float)

C:\Users\I334479\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\frame.pyc in __getitem__(self, key)
   2051         if isinstance(key, (Series, np.ndarray, Index, list)):
   2052             # either boolean or fancy integer index
-> 2053             return self._getitem_array(key)
   2054         elif isinstance(key, DataFrame):
   2055             return self._getitem_frame(key)

C:\Users\I334479\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\frame.pyc in _getitem_array(self, key)
   2095             return self.take(indexer, axis=0, convert=False)
   2096         else:
-> 2097             indexer = self.ix._convert_to_indexer(key, axis=1)
   2098             return self.take(indexer, axis=1, convert=True)
   2099 

C:\Users\I334479\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\indexing.pyc in _convert_to_indexer(self, obj, axis, is_setter)
   1228                 mask = check == -1
   1229                 if mask.any():
-> 1230                     raise KeyError('%s not in index' % objarr[mask])
   1231 
   1232                 return _values_from_object(indexer)

KeyError: "['Away'] not in index"

In [53]:
plt.figure()
df_poss.set_index('Away_Team').plot(kind='bar',y='Home_Team_Goals',figsize=(18,10))
plt.show()


<matplotlib.figure.Figure at 0x14ec2128>

In [54]:
df_zero_goals = df_poss[(df_poss["Home_Team_Goals"]== 0.0)]
print df_zero_goals
fig = plt.figure(figsize=(18,10))
ax = fig.add_subplot(111) # Create matplotlib axes
ax2 = ax.twinx()
width = 0.4

#f.amount.plot(kind='bar', color='red', ax=ax, width=width, position=1)
#f.price.plot(kind='bar', color='blue', ax=ax2, width=width, position=0)

df_zero_goals.ATDR.plot(kind='bar', color='red', ax=ax, width=width, position=1)
df_zero_goals.HTAR.plot(kind='bar', color='blue', ax=ax2, width=width, position=0)
plt.show()
#f_zero_goals.set_index('Away_Team').plot(kind='bar',y='ATDR',figsize=(18,10))
#lt.show()


        MId Home_Team  Home_Team_Goals  Away_Team_Goals    Away_Team  \
18     9590      MUFC                0                1          SUN   
77     9533      MUFC                0                3         MCFC   
239    9373      MUFC                0                1         NUFC   
244    9365      MUFC                0                1          EVE   
359    9251      MUFC                0                0          CHE   
414    9953   Man Utd                0                1    West Brom   
550    9820   Man Utd                0                1  Southampton   
915   12337   Man Utd                0                1  Southampton   
953   12298   Man Utd                0                0      Chelsea   
994   12257   Man Utd                0                0     West Ham   
1042  12213   Man Utd                0                0     Man City   
1119  12137   Man Utd                0                0    Newcastle   

     Home_Poss Away_Poss Home_ShotsT Away_ShotsT Home_Shots   ...    HTP  \
18          63        37           2           1         17   ...     14   
77        52.7      47.3           4           4         10   ...     14   
239       47.1      52.9           4           3          8   ...     14   
244         52        48           6           4         18   ...     14   
359       55.2      44.8           3           4         12   ...     13   
414       79.7      20.3           9           3         26   ...     13   
550       60.5      39.5           0           1         10   ...     14   
915       55.4      44.6           1           2          8   ...     14   
953       66.8      33.2           2           3         12   ...     14   
994       62.6      37.4           1           2         21   ...     14   
1042      58.7      41.3           1           1          6   ...     14   
1119      69.3      30.7           8           0         20   ...     14   

          HTR     HTAR     HTMR     HTDR ATP      ATR     ATAR     ATMR  \
18    887.480  189.502  291.978  406.000  14  799.090   72.556  365.534   
77    888.343  252.576  237.767  398.000  14  912.312   83.000  420.312   
239   879.087  171.000  221.954  486.133  14  846.124   89.310  303.835   
244   872.332  165.400  268.344  438.588  14  857.148  157.592  317.556   
359   892.737  243.626  234.466  414.645  14  908.503  111.306  328.967   
414   877.475  287.262  369.300  220.913  14  813.398   73.222  372.406   
550   889.578  296.630  278.838  314.110  14  838.100  151.000  308.168   
915   875.856   85.000  400.800  390.056  14  838.086  152.878  230.208   
953   899.416   85.000  487.424  326.992  13  907.504  100.204  396.300   
994   878.344    0.000  479.844  398.500  14  845.769   77.000  381.185   
1042  894.639   85.000  406.039  403.600  14  899.057   79.454  397.371   
1119  884.696   85.000  383.080  416.616  14  807.551  139.313  310.238   

         ATDR  
18    361.000  
77    409.000  
239   452.979  
244   382.000  
359   468.230  
414   367.770  
550   378.932  
915   455.000  
953   411.000  
994   387.584  
1042  422.232  
1119  358.000  

[12 rows x 33 columns]

In [ ]:
print df_zero_goals[['Home_Shots','Home_ShotsT']]

In [55]:
df_zero_goals[['Home_Poss','Away_Poss']] = df_zero_goals[['Home_Poss','Away_Poss']].astype(float)
fig = plt.figure(figsize=(18,10))
ax = fig.add_subplot(111) # Create matplotlib axes
ax2 = ax.twinx()
width = 0.4

#f.amount.plot(kind='bar', color='red', ax=ax, width=width, position=1)
#f.price.plot(kind='bar', color='blue', ax=ax2, width=width, position=0)

df_zero_goals.Home_Poss.plot(kind='bar', color='red', ax=ax, width=width, position=1)
df_zero_goals.Away_Poss.plot(kind='bar', color='blue', ax=ax2, width=width, position=0)
plt.show()



In [56]:
df_zero_goals[['Home_Tackles','Away_Tackles']] = df_zero_goals[['Home_Tackles','Away_Tackles']].astype(float)
print df_zero_goals[['Home_Tackles','Away_Tackles']]


      Home_Tackles  Away_Tackles
18            14.0          15.0
77            16.0          15.0
239           23.0          29.0
244           17.0          23.0
359           22.0          15.0
414           15.0          13.0
550           18.0          13.0
915            9.0          18.0
953           21.0          26.0
994           18.0          27.0
1042          19.0          28.0
1119          17.0          20.0

In [70]:
df_goals = pd.DataFrame()
df_goals = df_copy[(df_copy['Home_Team']=="MCFC") | (df_copy["Home_Team"] == "Man City")]
#print df_goals['Away_ShotsT']
plt.figure()
df_goals[['Away_ShotsT','Home_ShotsT']] = df_goals[['Away_ShotsT','Home_ShotsT']].astype(float)
df_goals.plot(kind='bar',x='Home_ShotsT',y='Away_ShotsT',figsize=(14,10))


Out[70]:
<matplotlib.axes._subplots.AxesSubplot at 0x16260d30>
<matplotlib.figure.Figure at 0x16c8b898>