In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
import scipy.io as sio
%matplotlib inline 
import pylab
import csv
from Tkinter import Tk
from tkFileDialog import askopenfilename
from tkFileDialog import askdirectory
import nibabel as nb
from scipy import io
import nibabel as nb
from scipy.interpolate import interp1d
from scipy import ndimage

from sklearn import linear_model

Open data


In [3]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/100499_100500_100501ConcatenatedStacksM308Smith0_4_60TS.mat

In [2]:
filename="/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/100499_100500_100501ConcatenatedStacksM308Smith0_4_60TS.mat"

In [3]:
Ua=sio.loadmat(filename)
DT=Ua['TSo']
DT.shape


Out[3]:
(21496, 308)

In [5]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/100499_100500_100501ConcatenatedStacksM308Smith0_4_60IC.nii

In [6]:
filename2="/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/100499_100500_100501ConcatenatedStacksM308Smith0_4_60IC.nii"

In [7]:
img1 = nb.load(filename2)
data = img1.get_data()
S=data.shape
S


Out[7]:
(166, 111, 10, 308)

Z-score


In [17]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

In [18]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

In [19]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-1
    Tvar[i]=np.var(DT[i,:])
Dmaps[Dmaps<0]=0

In [10]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/Xk499_500_501.mat

In [11]:
filename="/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/Xk499_500_501.mat"

In [12]:
Ua=sio.loadmat(filename)
Xk=Ua['Xk']

In [13]:
Xk.shape


Out[13]:
(21496, 2)

In [ ]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenamet = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenamet)

In [14]:
filenamet="/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/100498Registration/AVG_100498regcpsf.nii"

In [15]:
nimt=nb.load(filenamet)
Dtemp=np.squeeze(nimt.get_data())
Dtemp.shape


Out[15]:
(166, 111, 10)

Fit turns


In [20]:
%%javascript
IPython.OutputArea.auto_scroll_threshold =4000;



In [21]:
if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    D1=np.zeros([S[0],S[1],Nstack])
    Dmean=np.squeeze(data[:,:,range(Nstack),2])
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        Dmean[:,:,i]=Vmean
else:
    Nstack=S[2]
    D1=np.zeros([S[0],S[1],S[2]])
    Dmean=data[:,:,range(S[2])]  
    Dmean=np.squeeze(Dtemp[:,:,:])


/usr/local/lib/python2.7/dist-packages/numpy/lib/shape_base.py:422: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
  sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))

In [22]:
for j in range(S[3]):

    a=''
    if S[2]>5:
        for i in range(Nstack):
            V=Dmaps[:,:,Indices[i],j]
            D1[:,:,i]=np.max(V,2)
        D2[:,:,:,j]=D1
        D1[D1==0]=np.nan

In [23]:
plt.imshow(Dmean[:,:,1],cmap=plt.cm.gray)


Out[23]:
<matplotlib.image.AxesImage at 0x7f7146d87650>

In [24]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
Good_ICs=np.zeros(S[3])
Label_ICs=[]
pylab.rcParams['figure.figsize'] = (15, 2.5)

In [25]:
algorithm = linear_model.LinearRegression()

In [26]:
Sxk=Xk.shape

In [27]:
Sxk


Out[27]:
(21496, 2)

In [28]:
X=np.zeros((Sxk[0],2))

In [29]:
CCcb=np.correlate(DT[:,59],DT[:,68],'full')
CCry=np.correlate(DT[:,1],DT[:,65],'full')
print(np.argmax(CCcb)-21496)
print(np.argmax(CCry)-21496)
plt.plot(CCcb[range(21496-200,21496+500)])
plt.plot(CCry[range(21496-200,21496+500)])


4
10
Out[29]:
[<matplotlib.lines.Line2D at 0x7f7156678e90>]

In [30]:
X[:,0]=(Xk[:,0]-np.mean(Xk[:,0]))/np.std(Xk[:,0])
X[:,1]=(Xk[:,1]-np.mean(Xk[:,1]))/np.std(Xk[:,1])
#X[:,2]=(Xk[:,3]-np.mean(Xk[:,3]))/np.std(Xk[:,3])
#X[:,3]=(Xk[:,4]-np.mean(Xk[:,4]))/np.std(Xk[:,4])
#X[:,4]=(Xk[:,6]-np.mean(Xk[:,6]))/np.std(Xk[:,6])
#X[:,5]=(Xk[:,7]-np.mean(Xk[:,7]))/np.std(Xk[:,7])

In [31]:
del Time


-------------------------------------------------
NameError       Traceback (most recent call last)
<ipython-input-31-510813148c42> in <module>()
----> 1 del Time

NameError: name 'Time' is not defined

In [32]:
pylab.rcParams['figure.figsize'] = (15, 6)

Time=np.array(range(21496))*0.01-140
plt.rcParams["font.size"]=20
plt.plot(Time,(X[:,0]-np.mean(X[:,0]))/np.std(X[:,0]-np.mean(X[:,0])))
plt.plot(Time,(X[:,1]-np.mean(X[:,1]))/np.std(X[:,1]-np.mean(X[:,1])))

plt.plot(Time,DT[:,59]*3-3,'c')
plt.plot(Time,DT[:,68]*3-4,'b')
plt.plot(Time,DT[:,1]*3-5,'y')
plt.plot(Time,DT[:,65]*3-6,'r')
frame1 = plt.gca()
#frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
frame1.axes.set_xlabel("Time (s)",fontsize=20)
frame1.axes.set_xlim([0,55])
plt.savefig("100499LeftRight.svg",format="svg")
#plt.plot(np.smooth(X[:,1]-X[:,0]))
#plt.plot(X[:,2])
#plt.plot(X[:,3])
#plt.plot(X[:,4])
#plt.plot(X[:,5])
zero_crossings = np.where(np.diff(np.sign(X[:,1]-X[:,0])))[0]
print(zero_crossings.shape)

plt.show()


(409,)

In [33]:
pylab.rcParams['figure.figsize'] = (11, 3)
Time=np.array(range(6000,12000))*0.01
plt.plot(Time,X[range(6000,12000),0])
plt.plot(Time,X[range(6000,12000),1])

plt.plot(Time,DT[range(6000,12000),59]*2-2,'c')
plt.plot(Time,DT[range(6000,12000),68]*2-3,'b')
plt.plot(Time,DT[range(6000,12000),1]*2-4,'y')
plt.plot(Time,DT[range(6000,12000),65]*2-5,'r')


T=X
T[X<0]=0

#plt.plot(T[:,1]-T[:,0])
#plt.plot(Xk[:,1])
#plt.plot(X[:,1]-X[:,0])
#plt.plot(X[:,2])
#plt.plot(X[:,3])
#plt.plot(X[:,4])
#plt.plot(X[:,5])
zero_crossings = np.where(np.diff(np.sign(T[:,1]-T[:,0])))[0]
print(zero_crossings.shape)


(775,)

Plot all components for turning left, right, walking, and grooming


In [34]:
Rsq=np.zeros((1,S[3]))
Betas=np.zeros((2,S[3]))

In [35]:
X.shape


Out[35]:
(21496, 2)

In [36]:
DT.shape


Out[36]:
(21496, 308)

In [37]:
for j in range(S[3]):
    model = algorithm.fit(X, DT[:,j])
    Betas[:,j] = model.coef_
    Rsq[:,j] = model.score(X,DT[:,j])

In [38]:
RsqUni=np.zeros((6,S[3]))
BetaUni=np.zeros((6,S[3]))

In [39]:
Sx=X.shape

In [40]:
for k in range(2):
    for j in range(S[3]):
        model = algorithm.fit(np.reshape(X[:,k],(Sx[0],1)), DT[:,j])
        BetaUni[k,j] = model.coef_
        RsqUni[k,j] = model.score(np.reshape(X[:,k],(Sx[0],1)),DT[:,j])

In [41]:
plt.plot(RsqUni[0,:])


Out[41]:
[<matplotlib.lines.Line2D at 0x7f714521b4d0>]

In [42]:
import random

In [43]:
Betas[:,0]=0
Betas[:,6]=0

In [45]:
#del Final_map
#del Fmaps

if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

C=np.zeros((S[3],3))
i=1
l=0
Betas2=Betas
for j in range(S[3]):  
    if Betas2[1,j]>0.499*np.max(Betas2[1,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,2]=1
        C[j,1]=1-i/2
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.8*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas2[1,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        #print(Rsq[:,j])
        print(C[j,:])
        print(RsqUni[:,j])
        #if l==2:
         #   break


C=np.zeros((S[3],3))
i=1
l=0
Betas2=Betas
for j in range(S[3]):  
    if Betas2[0,j]>0.499*np.max(Betas2[0,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,0]=1
        C[j,1]=1-i/2
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.8*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        print(C[j,:])
        print(RsqUni[:,j])
        #if l==2:
            #break
 
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/500
    #Df=Df/(np.max(np.max(np.max(Df),3)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)


60
[ 0.  1.  1.]
[ 0.05060688  0.17697754  0.          0.          0.          0.        ]
69
[ 0.  0.  1.]
[ 0.14966472  0.05396544  0.          0.          0.          0.        ]
2
[ 1.  1.  0.]
[ 0.44209252  0.0511118   0.          0.          0.          0.        ]
66
[ 1.  0.  0.]
[ 0.4185168   0.01748524  0.          0.          0.          0.        ]

In [74]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenameM = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenameM)
img1 = nb.load(filenameM)
Masks = img1.get_data()
Sm=Masks.shape
Masks=np.array(Masks)


/media/test5/FreeBehaviorPanNeuronalGCaMP6/100498series/100498Registration/JFRC100498Transformedfullpsftrimmed.nii

In [89]:
filenameM='/home/sophie/RegionList'
with open(filenameM) as f:
    content = f.readlines()
Names=[Line.split('\t') for Line in content]
RegionName=[Names[i][0] for i in range(75)]
Num=[int(Names[i][2]) for i in range(75)]

# Average in masks to sort components by brain region

M=np.zeros((S[3],86))
Mapmean=np.zeros(S[3])
MMasks=np.zeros(86)

for i in range(S[3]):
    Mapmean[i]=np.mean(np.mean(np.mean(Dmaps[:,:,:,i])))
    for j in range(86):
        MMasks[j]=np.mean(np.mean(np.mean(Masks[:,:,:,j])))
        if MMasks[j]:
            M[i,j]=np.mean(np.mean(np.mean(Masks[:,:,:,j]*Dmaps[:,:,:,i])))/(MMasks[j]*Mapmean[i])


NoList=[]
M[7,3]=0
M[171,3]=0
CompMainName=S[3]*['']
CompNameAdd=np.zeros((S[3],86))
for i in range(S[3]):
    Max=np.max(M[i,:])
    I=np.argmax(M[i,:])+1
    if M[i,5]>0.95*Max:
        NoList.append(i)
    J=[l for l in range(74) if Num[l]==I]
    if J!=[]:
        CompMainName[i]=Names[np.array(J)][0]

NoList

del Final_map
del Fmaps

if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

C=np.zeros((S[3],3))
i=0
l=0
Betas2=Betas
for j in range(S[3]):  
    #if j in NoList:
    if j==53:#/media/test5/FreeBehaviorPanNeuronalGCaMP6/100133/old/100133Final/AVG_100133ss2on250cregcpsf.nii
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,2]=1
        C[j,1]=1-i/8
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.5*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        print(Rsq[:,j])
        print(Betas[:,j])
        print(RsqUni[:,j])
        print(BetaUni[:,j])
        #if l==2:

pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/400
    #Df=Df/(np.max(np.max(np.max(Df),3)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:34: VisibleDeprecationWarning: converting an array with ndim > 0 to an index will result in an error in the future
54
[ 0.12457052]
[ 0.06253572 -0.00100261]
[ 0.12454166  0.00801972  0.          0.          0.          0.        ]
[ 0.06277088 -0.01622922  0.          0.          0.          0.        ]

In [ ]: