In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
import scipy.io as sio
%matplotlib inline
import pylab
import csv
from Tkinter import Tk
from tkFileDialog import askopenfilename
from tkFileDialog import askdirectory
import nibabel as nb
from scipy import io
#from nifti import NiftiImage
import nibabel as nb
from scipy.interpolate import interp1d
from scipy import ndimage
In [2]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)
In [3]:
Ua=sio.loadmat(filename)
DT=Ua['TSo']
DT.shape
Out[3]:
In [4]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)
In [5]:
img1 = nb.load(filename2)
data = img1.get_data()
S=data.shape
S
Out[5]:
In [6]:
S=data.shape
S
Out[6]:
Z-score
In [7]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])
In [8]:
for i in range(S[3]):
Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)
In [9]:
for i in range(S[3]):
Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
Var[i]=np.sqrt(np.var(Dsq))
Dvar=Demean[:,:,:,i]/Var[i]
Dmaps[:,:,:,i]=Dvar-2.5
Tvar[i]=np.var(DT[i,:])
Dmaps[Dmaps<0]=0
In [10]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenameM = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenameM)
img1 = nb.load(filenameM)
Masks = img1.get_data()
Sm=Masks.shape
Masks=np.array(Masks)
In [11]:
filenameM='/home/sophie/LargeRegionList'
with open(filenameM) as f:
content = f.readlines()
Names=[Line.replace('\n','').split(' ') for Line in content]
RegionName=[Names[i][1] for i in range(12)]
Num=[int(Names[i][0]) for i in range(12)]
In [12]:
Dmaps.shape
Out[12]:
In [13]:
M=np.zeros((S[3],13))
Mapmean=np.zeros(S[3])
MMasks=np.zeros(13)
In [14]:
for i in range(S[3]):
Mapmean[i]=np.mean(np.mean(np.mean(Dmaps[:,:,:,i])))
for j in range(12):
MMasks[j]=np.mean(np.mean(np.mean(Masks[:,:,:,j])))
if MMasks[j]:
M[i,j]=np.mean(np.mean(np.mean(Masks[:,:,:,j]*Dmaps[:,:,:,i])))/(MMasks[j]*Mapmean[i])
In [15]:
CompMainName=S[3]*['']
CompNameAdd=np.zeros((S[3],12))
for i in range(S[3]):
Max=np.max(M[i,:])
I=np.argmax(M[i,:])+1
for j in range(12):
J=[l for l in range(12) if Num[l]==(j+1)]
if M[i,j]>0.2*Max:
CompNameAdd[i,J]=1
J=[l for l in range(12) if Num[l]==I]
if J!= []:
CompMainName[i]=Names[np.array(J)][0]
In [16]:
J
Out[16]:
In [17]:
pylab.rcParams['figure.figsize'] = (13, 2.5)
h=5
tot=0
GoodICAnat=np.zeros(S[3])
for l in range(12):
Final_maps=np.zeros((S[0],S[1],3))
Fmap=np.zeros((S[0],S[1],3))
C=np.zeros(3)
n=0
for i in range(len(CompMainName)):
Dmmv=np.mean(data[:,:,:,i],2)
Dmmv[Dmmv<0.2*np.max(np.max(np.max(Dmmv)))]=0
C=np.squeeze(np.random.rand(3,1))
labeled, nrobject=ndimage.label(Dmmv>0)
if CompMainName[i]==Names[l][0] and (sum(CompNameAdd[i,:])<5) and nrobject<200:
n=n+1
for k in range(3):
Fmap[:,:,k]=0.7*Dmmv*C[k]/np.max(C)
Final_maps=Final_maps+Fmap
#plt.plot(Time_fluoICA.T,(DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
plt.plot((DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
tot=tot+1
GoodICAnat[i]=1
if n!=0:
print(RegionName[l])
plt.show()
FM=Final_maps/np.max(np.max(Final_maps))
FM[FM<0.1]=0
plt.imshow(FM,interpolation='none')
plt.show()
frame1 = plt.gca()
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
In [18]:
BadICs=[2,37,49,60,194,1,28,140,22,47,52,92,93,115,116,121,136,164,166,58,101,170,180,217,54,141,72,98,159,195,222,205,3,8,19,34,41,55,64,65,85,86,88,90,96,97,103,104,108,110,111,114,124,128,130,142,147,152,156,160,168,171,177,178,188,204,215,50,233]
In [19]:
for idx in BadICs:
GoodICAnat[idx] = 0.0
In [20]:
pylab.rcParams['figure.figsize'] = (13, 5)
h=5
tot=0
NumberInLargeRegion=np.zeros(13)
for l in range(12):
Final_maps=np.zeros((S[0],S[1],3))
Fmap=np.zeros((S[0],S[1],3))
C=np.zeros(3)
n=0
for i in range(len(CompMainName)):
Dmmv=np.mean(data[:,:,:,i],2)
Dmmv[Dmmv<0.2*np.max(np.max(np.max(Dmmv)))]=0
C=np.squeeze(np.random.rand(3,1))
labeled, nrobject=ndimage.label(Dmmv>0)
if CompMainName[i]==Names[l][0] and (sum(CompNameAdd[i,:])<5) and nrobject<200 and GoodICAnat[i]==1:
n=n+1
for k in range(3):
Fmap[:,:,k]=0.7*Dmmv*(C[k]+0.2)/np.max(C+0.2)
Final_maps=Final_maps+Fmap
#plt.plot(Time_fluoICA.T,(DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
plt.plot((DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
tot=tot+1
GoodICAnat[i]=1
print(i)
if n!=0:
print(RegionName[l])
plt.show()
FM=Final_maps/np.max(np.max(Final_maps))
FM[FM<0.1]=0
plt.imshow(FM,interpolation='none')
plt.show()
frame1 = plt.gca()
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
NumberInLargeRegion[l]=n
In [21]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)
Ua=sio.loadmat(filename)
X=Ua['X']
plt.plot(X.T)
Sx=X.shape
In [22]:
-
Out[22]:
In [23]:
AvLightIC=np.zeros(DT.shape[1])
for j in range(S[3]):
k=0
for i in range(Sx[1]):
if X[0,i]==1:
AvLightIC[j]=AvLightIC[j]+(np.mean(DT[i:i+200,j])-np.mean(DT[i-200:i,j]))/(2*np.std(DT[i-200:i,j]))
k=k+1
AvLightIC[j]=AvLightIC[j]/k
In [24]:
AvOdorIC=np.zeros(DT.shape[1])
for j in range(S[3]):
k=0
for i in range(Sx[1]):
if X[1,i]==1:
AvOdorIC[j]=AvOdorIC[j]+(np.mean(DT[i:i+200,j])-np.mean(DT[i-200:i,j]))/(2*np.std(DT[i-200:i,j]))
k=k+1
AvOdorIC[j]=AvOdorIC[j]/k
In [25]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
pylab.rcParams['figure.figsize'] = (15, 2.5)
In [69]:
if S[2]>5:
Final_map=np.zeros([S[0],S[1],5,3])
Fmaps=np.zeros([S[0],S[1],5,3])
else:
Final_map=np.zeros([S[0],S[1],3])
Fmaps=np.zeros([S[0],S[1],3])
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape
In [70]:
C=np.zeros((S[3],3))
i=0
l=0
LightNuminRegion=np.zeros(12)
for j in range(S[3]):
if AvLightIC[j]>1 and GoodICAnat[j]:
#C[j,:]=C1[i%6][:]
C[j,2]=1
C[j,1]=1
#C[j,2]=1
for k in range(3):
M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
Fmaps[:,:,:,k]=0.5*D2[:,:,:,j]*C[j,k]/M
Final_map=Final_map+Fmaps
#Betas[0,j]=0
#print(Indexo[j])
print(j+1)
print(CompMainName[j])
i=i+1
l=l+1
LightNuminRegion[int(CompMainName[j])-1]=LightNuminRegion[int(CompMainName[j])-1]+1
#if l==2:
#break
In [71]:
LightNuminRegion
Out[71]:
In [72]:
C=np.zeros((S[3],3))
i=0
l=0
OdorNuminRegion=np.zeros(12)
for j in range(S[3]):
if AvOdorIC[j]>1 and GoodICAnat[j]:
#C[j,:]=C1[i%6][:]
C[j,0]=1
C[j,1]=0
#C[j,2]=1
for k in range(3):
M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
Fmaps[:,:,:,k]=0.5*D2[:,:,:,j]*C[j,k]/M
Final_map=Final_map+Fmaps
#Betas[0,j]=0
#print(Indexo[j])
print(j+1)
print(CompMainName[j])
OdorNuminRegion[int(CompMainName[j])-1]=OdorNuminRegion[int(CompMainName[j])-1]+1
i=i+1
l=l+1
In [73]:
OdorNuminRegion
Out[73]:
In [74]:
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)
Df=np.zeros([S[0],S[1],5,3])
for i in range(3):
Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/60500
#Df=Df/(np.max(np.max(np.max(Df),3)))
if S[2]>5:
N=Nstack
else:
N=S[2]
for i in range(N):
#if Good_ICs[j]:
plt.subplot(1,N,i+1)
plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
frame1 = plt.gca()
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)
In [32]:
np.savetxt('/'.join(filename.split('/')[:-1])+'/NumberInLargeRegionsLight.txt',LightNuminRegion)
np.savetxt('/'.join(filename.split('/')[:-1])+'/NumberInLargeRegionsOdor.txt',OdorNuminRegion)
In [ ]: