This pipeline opens the result of ICAalamelodic.m, lets the user interactively label the components that look like neuronal activity (rather than movement artefacts or noise), sort them by label, plots a final summary for the chosen components, and save the reordered maps and time series.


In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
%matplotlib inline 
import pylab

Open time series


In [2]:
import scipy.io as sio

In [3]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie/New Volume/100618series/100619regcdFF2000pointspsfkf115Smith0_4_60TS.mat

In [4]:
Ua=sio.loadmat(filename)

In [5]:
DT=Ua['TSo']

In [6]:
DT.shape


Out[6]:
(5744, 115)

In [7]:
S1=DT.shape

In [8]:
DTmean=np.zeros(S1)
DTvar=np.zeros(S1)
Var=np.zeros(S1[1])

In [9]:
for i in range(S1[1]):
    DTmean[:,i]=DT[:,i]-np.mean(DT[:,i],0)

In [10]:
for i in range(S1[1]):
    Var[i]=np.sqrt(np.var(DTmean[:,i]))
    DTvar[:,i]=DTmean[:,i]/Var[i]

In [11]:
DTvar.shape


Out[11]:
(5744, 115)

open maps


In [12]:
import nibabel as nb

In [13]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/sophie/New Volume/100618series/100619regcdFF2000pointspsfkf115Smith0_4_60IC.nii

In [14]:
img1 = nb.load(filename2)

In [15]:
data = img1.get_data()

In [16]:
S=data.shape

In [17]:
S


Out[17]:
(78, 69, 10, 115)

Zscore maps


In [18]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

Transform the maps to have zero mean


In [19]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

Transform the maps to have unit variance and zscore


In [20]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-2.5
Dmaps[Dmaps<0]=0

Order ICs by variance


In [21]:
datao=data
Dmapso=Dmaps

In [22]:
plt.plot(Var)


Out[22]:
[<matplotlib.lines.Line2D at 0x7f8b6cbbd610>]

Separate maps in substacks, sort the independent components by brain regions


In [23]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
Good_ICs=np.zeros(S[3])
Label_ICs=[]
pylab.rcParams['figure.figsize'] = (13, 2.5)

In [24]:
Dtemp=data[:,:,:,0]

In [25]:
%%javascript
IPython.OutputArea.auto_scroll_threshold =4000;



In [26]:
if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    D1=np.zeros([S[0],S[1],Nstack])
    Dmean=Dtemp[:,:,range(Nstack)]
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        #Dmean[:,:,i]=np.max(Vmean,0)
        Dmean[:,:,i]=Vmean
else:
    Nstack=S[2]
    D1=np.zeros([S[0],S[1],S[2]])
    Dmean=data[:,:,range(S[2])]  
    Dmean=np.squeeze(Dtemp[:,:,:])


/usr/local/lib/python2.7/dist-packages/numpy/lib/shape_base.py:422: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
  sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))

In [27]:
DTvar.shape


Out[27]:
(5744, 115)

In [28]:
S


Out[28]:
(78, 69, 10, 115)

In [29]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)




In [30]:
Ua


Out[30]:
{'TSo': array([[ -9.61322175e-03,   1.79419992e-02,  -1.17744374e-02, ...,
           1.10964889e-01,  -1.80970921e-01,   1.24256890e-01],
        [  1.27670056e-02,   7.02564753e-03,   2.68093413e-02, ...,
          -1.69118316e-02,   7.87440618e-02,  -1.19080759e-02],
        [  1.03195869e-02,  -9.14374416e-03,   5.87674483e-03, ...,
          -5.61557810e-02,   1.12762318e-01,  -6.10399318e-02],
        ..., 
        [ -5.75419783e-03,  -6.66918005e-03,  -1.53643382e-05, ...,
          -2.47547413e-03,  -4.37432277e-03,  -2.35866979e-03],
        [ -3.38330710e-03,   1.55627017e-03,  -1.21414660e-03, ...,
          -4.19698437e-03,   8.02553037e-03,  -4.98817288e-03],
        [ -1.62276298e-03,   6.54290800e-04,  -7.22368401e-04, ...,
          -2.10317185e-03,   4.80661297e-03,  -2.62496999e-03]]),
 '__globals__': [],
 '__header__': 'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Tue Jul  3 08:59:31 2018',
 '__version__': '1.0'}

In [31]:
Ua=sio.loadmat(filename)
Xk=Ua['X']
#Xk[1,:]=Ua['Walk']


---------------------------------------------------------------------------
IOError                                   Traceback (most recent call last)
<ipython-input-31-2a3774fcfc59> in <module>()
----> 1 Ua=sio.loadmat(filename)
      2 Xk=Ua['X']
      3 #Xk[1,:]=Ua['Walk']

/usr/local/lib/python2.7/dist-packages/scipy/io/matlab/mio.pyc in loadmat(file_name, mdict, appendmat, **kwargs)
    133     """
    134     variable_names = kwargs.pop('variable_names', None)
--> 135     MR = mat_reader_factory(file_name, appendmat, **kwargs)
    136     matfile_dict = MR.get_variables(variable_names)
    137     if mdict is not None:

/usr/local/lib/python2.7/dist-packages/scipy/io/matlab/mio.pyc in mat_reader_factory(file_name, appendmat, **kwargs)
     56        type detected in `filename`.
     57     """
---> 58     byte_stream = _open_file(file_name, appendmat)
     59     mjv, mnv = get_matfile_version(byte_stream)
     60     if mjv == 0:

/usr/local/lib/python2.7/dist-packages/scipy/io/matlab/mio.pyc in _open_file(file_like, appendmat)
     26                 file_like += '.mat'
     27                 try:
---> 28                     return open(file_like, 'rb')
     29                 except IOError:
     30                     pass  # Rethrow the original exception.

IOError: [Errno 2] No such file or directory: u'.mat'

In [32]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenamet = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenamet)
nimt=nb.load(filenamet)
Dtemp=np.squeeze(nimt.get_data())
Dtemp.shape


if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    Dmean=np.zeros([S[0],S[1],Nstack])
    #Dmean=np.squeeze(data[:,:,range(Nstack),2])
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        Dmean[:,:,i]=Vmean

plt.imshow(Vmean,cmap=plt.cm.gray)


/media/sophie/New Volume/100618series/MAX_100619regcdFF2000pointspsfkf115Smith0_4_60IC.nii
Out[32]:
<matplotlib.image.AxesImage at 0x7f8b6ca1c810>

In [34]:
for j in range(S[3]):

    if S[2]>5:
        for i in range(Nstack):
            V=Dmaps[:,:,Indices[i],j]
            D1[:,:,i]=np.max(V,2)
        D2[:,:,:,j]=D1
        D1[D1==0]=np.nan
           
    else:
        for i in range(S[2]):
            V=Dmaps[:,:,i,j]
            D1[:,:,i]=V 
            

    print(j)
    for i in range(Nstack):
        plt.subplot(1,5,i+1)
        plt.imshow(Dmean[:,:,i],cmap=plt.cm.gray)
        plt.imshow(D1[:,:,i], cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
        
    plt.show()
    
   # plt.plot(TS_ROI[Order[j],:])
    plt.plot(DTvar[:,j])
    #plt.plot(Xk[0,:]/np.std(Xk[0,:])+0.5,color=(1,0,0))   
    #plt.plot(Xk[1,:]/np.std(Xk[1,:])+0.5,color=(0,1,0))
    #plt.plot(Xk[2,:]/np.std(Xk[1,:])+0.5,color=(0.5,0.5,0))    
    #plt.plot(Xk[3,:]/np.std(Xk[1,:])+0.5,color=(0,0.5,1))
    
    plt.show()
    
    Label_ICs.append(raw_input())
    if Label_ICs[j]=='':
        Good_ICs[j]=0
    else:
        Good_ICs[j]=1


0
MB
1
MB
2
MB
3
4
DCB
5
6
7
/usr/local/lib/python2.7/dist-packages/numpy/ma/core.py:4185: UserWarning: Warning: converting a masked element to nan.
  warnings.warn("Warning: converting a masked element to nan.")
DCB
8
DCB
9
10
11
12
DCB
13
Lat
14
15
16
17
18
19
MB
20
DCB
21
DCB
22
MB
23
24
MB
25
DCB
26
DCB
27
DCB
28
29
30
31
MB
32
33
34
35
36
37
38
AL
39
40
41
42
43
44
45
46
47
48
49
OL
50
Fla
51
52
53
54
55
56
MB
57
58
MB
59
60
61
Ant
62
63
64
65
66
67
68
69
FB
70
71
72
73
FB
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114


In [35]:
Label_ICs[66]='MB'

In [38]:
List1=[(Label_ICs[i],i) for i in range(S[3])]
Newlist=sorted(List1, key=lambda List1: List1[0])

Neworder=[Newlist[i][1] for i in range(S[3])]

NewDT=DTvar[:,Neworder[:]].T

for j in range(len(Neworder)):
    A=NewDT[:,j]
    V=np.sqrt(np.var(A))
    NewDT[:,j]=A/V

C1=np.zeros([13,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
C1[6][:]=(1,0.5,0)
C1[7][:]=(0,1,0.5)
C1[8][:]=(0.5,0,1)
C1[9][:]=(0.8,0.8,0.5)
C1[10][:]=(0.5,1,1)
C1[11][:]=(1,0.5,1)
C1[12]=(0.5,0.5,0.5)
h=3

Newmaps=Dmaps[:,:,:,Neworder[:]]

L=len(set([Label_ICs[Neworder[i]] for i in range(len(Neworder))]))

Regionmaps=np.zeros([S[0],S[1],L,3])
Datasort=np.zeros([S[0],S[1],S[2],L,3])

Regionname=[]

DMapsordered=Dmapso[:,:,:,Neworder[:]]

DMapsordered=Dmapso[:,:,:,Neworder[:]]

j=0
i=0
k=Label_ICs[Neworder[0]]
m=0
Regionname.append(Label_ICs[Neworder[i]])
for i in range(len(Neworder)):
    #C2=C1[i%6][:]
    for l in range(3):
        M=np.max(np.squeeze(np.reshape(Newmaps[:,:,:,i],S[0]*S[1]*S[2])))
        Regionmaps[:,:,j,l]=Regionmaps[:,:,j,l]+0.5*np.max(DMapsordered[:,:,:,i],2)*C1[i%13][l]/M
        Datasort[:,:,:,j,l]=Datasort[:,:,:,j,l]+Dmaps[:,:,:,Neworder[i]]*C1[i%13][l] 
    i=i+1
    m=m+1
    if i<len(Neworder):
        k1=Label_ICs[Neworder[i]]
        
    if k1 != k:
        j=j+1
        k=k1
        m=0
        Regionname.append(Label_ICs[Neworder[i]])

pylab.rcParams['figure.figsize'] = (14, 5)
import scipy
from scipy import ndimage
j=0
m=0
L=0
k=Label_ICs[Neworder[0]]
for i in range(len(Neworder)):
    m=m+1
    
    
    if i<len(Neworder):
        k1=Label_ICs[Neworder[i]]
        
    if k1 != k:
        
        k=k1
        m=0
        
        plt.show()
        plt.figure(2*j+1)
        Rotated_Plot = ndimage.rotate(Regionmaps[:,:,j], -90)
        IM=plt.imshow(Rotated_Plot) 
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
        j=j+1
        plt.figure(2*j)
        #plt.plot(Xk[0,:]/np.std(Xk[0,:])+0.5,color=(1,0,0))   
        #plt.plot(Xk[1,:]/np.std(Xk[1,:])+0.5,color=(0,1,0))
        #plt.plot(Xk[2,:]/np.std(Xk[1,:])+0.5,color=(0.5,0.5,0))    
        #plt.plot(Xk[3,:]/np.std(Xk[1,:])+0.5,color=(0,0.5,1))
    plt.plot(NewDT[i,:]+h*m,color=C1[i%13][:])
    
plt.figure(2*j+1)
Rotated_Plot = ndimage.rotate(Regionmaps[:,:,j], -90)
IM=plt.imshow(Rotated_Plot)
frame1 = plt.gca()
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)



In [ ]: